

CMOS 8-BIT SINGLE CHIP MICROCOMPUTER S1C88650 Technical Manual S1C88650 Technical Hardware



SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

Configuration of product number

Contents

1	INT	RODUCTION	1					
	1.1	Features	1					
	1.2	Block Diagram	2					
	1.3	Pins						
		1.3.1 Pin layout diagram						
		1.3.2 Pin description	4					
	1.4	Mask Option	5					
2	PO	WER SUPPLY	7					
	2.1	Operating Voltage	7					
	2.2	Internal Power Supply Circuit	7					
3	CPI	U AND BUS CONFIGURATION						
	3.1	CPU	8					
	3.2	Internal Memory	8					
		3.2.1 Program ROM	8					
		3.2.2 RAM						
		3.2.3 I/O memory 3.2.4 Display memory						
		3.2.5 Kanji font ROM						
	3.3	Exception Processing Vectors						
	3.4	CC (Customized Condition Flag)						
	3.5	Chip Mode						
		3.5.1 MCU mode and MPU mode						
		3.5.2 Bus mode						
		3.5.3 CPU mode						
	3.6	External Bus						
		3.6.1 Data bus 3.6.2 Address bus						
		3.6.2 Read (\overline{RD}) /write (\overline{WR}) signals						
		3.6.4 Chip enable (\overline{CE}) signal						
		3.6.5 WAIT control						
		3.6.6 Bus authority release state						
4	INI	TIAL RESET						
	4.1	Initial Reset Factors						
		4.1.1 RESET terminal						
		4.1.2 Simultaneous LOW level input at input port terminals K00–K03 4.1.3 Initial reset sequence						
	4.2	Initial Settings After Initial Reset						
5	PEI	PERIPHERAL CIRCUITS AND THEIR OPERATION						
-	5.1	I/O Memory Map						
	5.2	System Controller and Bus Control						
	5.2	5.2.1 Bus mode and CPU mode settings						
		5.2.2 Address decoder (\overline{CE} output) settings						
		5.2.3 WAIT state settings						
		5.2.4 Setting the bus authority release request signal						
		5.2.5 Stack page setting 5.2.6 Control of system controller						
		5.2.7 Programming notes						

CONTENTS

5.3	Watchdog Timer	
	5.3.1 Configuration of watchdog timer	
	5.3.2 Interrupt function	
	5.3.3 Control of watchdog timer	
	5.3.4 Programming notes	. 40
5.4	Oscillation Circuits	.41
	5.4.1 Configuration of oscillation circuits	
	5.4.2 Mask option	
	5.4.3 OSC1 oscillation circuit	
	5.4.4 OSC3 oscillation circuit	
	5.4.5 Switching the CPU clocks	
	5.4.6 Control of oscillation circuit	
	5.4.7 Programming notes	. 43
5.5	Input Ports (K ports)	.44
	5.5.1 Configuration of input ports	
	5.5.2 Mask option	
	5.5.3 Pull-up control	
	5.5.4 Interrupt function and input comparison register	
	5.5.5 Control of input ports	
	5.5.6 Programming notes	
5.6	Output Ports (R ports)	51
5.0	5.6.1 Configuration of output ports	
	5.6.2 High impedance control	
	5.6.3 DC output	
	5.6.4 Control of output ports	
5.7	I/O Ports (P ports)	
5.7	5.7.1 Configuration of I/O ports	
	5.7.2 Mask option	
	5.7.2 Mask option	
	5.7.4 Pull-up control	
	5.7.5 Special output	
	5.7.6 Control of I/O ports	
	5.7.7 Programming notes	
5.8	Serial Interface	
5.0	5.8.1 Configuration of serial interface	
	5.8.2 Switching of terminal functions	
	5.8.2 Switching of terminal functions 5.8.3 Transfer modes	
	5.8.4 Clock source	
	5.8.5 Transmit-receive control	
	5.8.6 Operation of clock synchronous transfer	
	5.8.7 Operation of asynchronous transfer	
	5.8.8 Interrupt function	
	5.8.9 Control of serial interface	
	5.8.10 Programming notes	. 80
5.9	Clock Timer	81
5.7	5.9.1 Configuration of clock timer	
	5.9.2 Interrupt function	
	5.9.3 Control of clock timer	
	5.9.4 Programming notes	
5.10	Programmable Timer	
5.10	5.10.1 Configuration of programmable timer	
	5.10.2 Operation mode	
	5.10.2 Setting of input clock	
	5.10.5 Setting of input clock	
	5.10.5 Interrupt function	
	5.10.6 Setting of TOUT output	
	5.10.7 Transfer rate setting of serial interface	

		5.10.8 Setting frame frequency for LCD driver 5.10.9 Control of programmable timer	
		5.10.10 Programming notes	
	5.11	LCD Driver	
		5.11.2 LCD power supply	
		5.11.3 Frame frequency	
		5.11.4 Switching drive duty 5.11.5 Display memory	
		5.11.5 Display memory 5.11.6 Display control	
		5.11.7 Control of LCD driver	
		5.11.8 Programming notes	
	5.12	Supply Voltage Detection (SVD) Circuit	
		5.12.1 Configuration of SVD circuit 5.12.2 SVD operation	
		5.12.3 Control of SVD circuit	
		5.12.4 Programming notes	
	5.13	Heavy Load Protection Function	
		5.13.1 Outline of heavy load protection function 5.13.2 Control of heavy load protection function	
		5.13.3 Programming note	
	5.14	Interrupt and Standby Status	
		5.14.1 Interrupt generation conditions	
		5.14.2 Interrupt factor flag 5.14.3 Interrupt enable register	
		5.14.4 Interrupt priority register and interrupt priority level	
		5.14.5 Exception processing vectors	
		5.14.6 Control of interrupt 5.14.7 Programming notes	
6	SUA	IMARY OF NOTES	
0	6.1	Notes for Low Current Consumption	
	6.2	Precautions on Mounting	
7		-	
7		SIC EXTERNAL WIRING DIAGRAM	
8	ELE	ECTRICAL CHARACTERISTICS	
	8.1	Absolute Maximum Rating	
	8.2	Recommended Operating Conditions	
	8.3	DC Characteristics	
	8.4	Analog Circuit Characteristics	
	8.5	Power Current Consumption	
	8.6	AC Characteristics	
	8.7	Oscillation Characteristics	
	8.8	Characteristics Curves (reference value)	
9	PAC	CKAGE	
	9.1	Plastic Package	
	9.2	Ceramic Package for Test Samples	
10	PAD	D LAYOUT	
	10.1	Diagram of Pad Layout	
	10.2	Pad Coordinates	

APPEND	IX A S5U1C88000P1&S5U1C88649P2 MANUAL	
	(Peripheral Circuit Board for S1C88650)	
A.1	Names and Functions of Each Part	
A.2	Precautions	
	A.2.1 Precaution for operation	
	A.2.2 Differences from actual IC	
A.3	Connecting to the Target System	
A.4	Product Specifications	
APPEND	IX B USING KANJI FONT	

1 INTRODUCTION

The S1C88650 is an 8-bit microcomputer for portable equipment with an LCD display that has a built-in LCD controller/driver and a character generator (kanji) ROM. This microcomputer features low-voltage (1.8 V) and high-speed (8.2 MHz) operations as well as low-current consumption (2.5 μ A during standby). The LCD controller/driver contains an LCD drive power supply circuit and can drive an maximum of 126 × 32-dot LCD panel in low-power consumption. The S1C88650 has a built-in 11 × 12-dot kanji font ROM that contains JIS level-1 and level-2 kanji sets,

other characters and user-defined characters, this makes it possible to display kanji characters without any external kanji font ROM (refer to Appendix B, "USING KANJI FONT"). This 8-bit CPU has up to 16MB accessible address space allowing easy implementation of a large data processing application.

The S1C88650 is suitable for display modules, portable CD/MD, solid audio players, PDA, data bank and other applications that required an exclusive LCD driver in conventional systems.

1.1 Features

Table 1.1.1 lists the features of the S1C88650.

[
Core CPU	S1C88 (MODEL3) CMOS 8-bit core CPU						
Main (OSC3) oscillation circuit	Crystal oscillation circuit/ceramic oscillation circuit 8.2 MHz (Max.), or CR oscillation circuit 2.2 MHz (Max.)						
Sub (OSC1) oscillation circuit	Crystal oscillation circuit 32.768 kHz (Typ.), or CR oscillation circuit 200 kHz (Max.)						
Instruction set	608 types (usable for multiplication and division instructions)						
Min. instruction execution time	0.244 µsec/8.2 MHz (2 clock)						
Internal ROM capacity	48K bytes/program ROM						
	896K bytes/kanji font ROM (can be used for a program and data ROM when no font data is stored.)						
Internal RAM capacity	8K bytes/RAM 768 bytes/display memory						
Bus line	Address bus: 20 bits (also usable as general output ports when not used for the bus)						
	Data bus: 8 bits (also usable as general I/O ports when not used for the bus)						
	CE signal: 3 bits						
	WR signal: 1 bit (also usable as general output ports when not used for the bus)						
	RD signal: 1 bit						
Input port	8 bits (4 bits can be used as the source clock inputs for PWM timers and 1 bit as a bus request signal input)						
Output port	0-3 bits (when the external bus is used) (1 bit can be configured for the bus acknowledge signal output)						
	26 bits (when the external bus is not used)						
I/O port	8 bits (when the external bus is used) (shard with serial interface, FOUT and TOUT terminals)						
	16 bits (when the external bus is not used)						
Serial interface	1 ch (optional clock synchronous system or asynchronous system)						
Timer	Programmable timer: 16 bits (8 bits \times 2) 4 ch (with PWM function)						
	Clock timer: 1 ch						
LCD driver	Dot matrix type (supports $16 \times 16/5 \times 8$ or 12×12 dot font)						
	126 segments \times 32, 16 or 8 commons (1/5 bias)						
	Built-in LCD power supply circuit (booster type, 5 potentials)						
Watchdog timer	Built-in (1–8 second cycles)						
Supply voltage detection	13 value programmable (1.8–2.7 V)						
(SVD) circuit							
Interrupt	External interrupt: Input interrupt 1 system (8 types)						
	Internal interrupt: Timer interrupt 2 systems (16 types)						
	Serial interface interrupt 1 system (3 types)						
Supply voltage	1.8–3.6 V						
Current consumption	SLEEP mode: 1 µA (Typ.)						
	HALT mode: 2.5 µA (Typ.) 32 kHz crystal, LCD OFF						
	10 μA (Typ.) 32 kHz CR, LCD OFF						
	7.6 μ A (Typ.) 32 kHz crystal, LCD ON*, VDD = 2.5–3.6 V						
	Run state: 9 µA (Typ.) 32 kHz crystal, LCD OFF						
	15 μA (Typ.) 32 kHz CR, LCD OFF						
	1700 μA (Typ.) 8 MHz ceramic, LCD OFF						
	$600 \mu\text{A}$ (Typ.) 2 MHz CR, LCD OFF						
	$14 \mu A$ (Typ.) 32kHz crystal, LCD ON*, VDD = 2.5–3.6 V						
	$19 \mu\text{A}$ (Typ.) 32kHz crystal, LCD ON*, VDD = $1.8-2.5 \text{V}$, Power voltage booster ON						
	$14 \mu\text{A}$ (Typ.) 32 kHz crystal, SVD ON						
Supply form	OFP22-256pin or chip						
11 2							

* The current consumption with LCD ON listed above is the value under the conditions of LCDCx = "11 (all on)", LCx = "0FH" and "No panel load". Current consumption increases according to the display contents and panel load.

1.2 Block Diagram

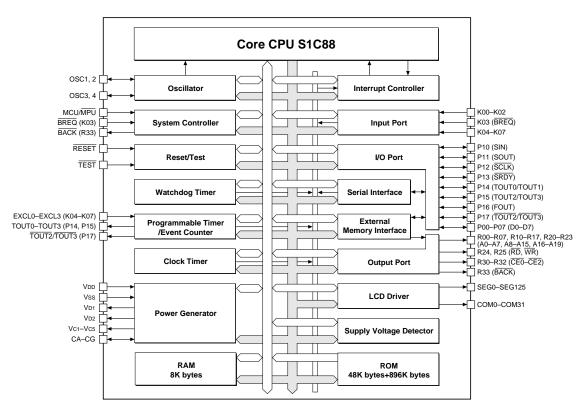
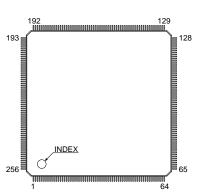



Fig. 1.2.1 S1C88650 block diagram

1.3 Pins

1.3.1 Pin layout diagram

1 2 3 4 5 6 7 8 9 10 11 12 13	N.C. N.C. TEST SEG39 SEG40 SEG41 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47	53 54 55 56 57 58 59 60 61	SEG88 SEG89 SEG90 SEG91 SEG92 SEG93 SEG94 SEG95	105 106 107 108 109 110	COM23 COM22 COM21 COM20 COM19	157 158 159 160	P07/D7 P06/D6 P05/D5	209 210 211	COM11 COM12 COM13
3 4 5 6 7 8 9 10 11 12	TEST SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG44 SEG45 SEG46	55 56 57 58 59 60 61	SEG90 SEG91 SEG92 SEG93 SEG94	107 108 109 110	COM21 COM20 COM19	159 160	P05/D5		
4 5 6 7 8 9 10 11 12	SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46	56 57 58 59 60 61	SEG91 SEG92 SEG93 SEG94	108 109 110	COM20 COM19	160		211	COM13
5 6 7 8 9 10 11 12	SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46	57 58 59 60 61	SEG92 SEG93 SEG94	109 110	COM19		DO (D) (0.0111.0
6 7 8 9 10 11 12	SEG41 SEG42 SEG43 SEG44 SEG45 SEG46	58 59 60 61	SEG93 SEG94	110			P04/D4	212	COM14
7 8 9 10 11 12	SEG42 SEG43 SEG44 SEG45 SEG46	59 60 61	SEG94		001440	161	P03/D3	213	COM15
8 9 10 11 12	SEG43 SEG44 SEG45 SEG46	60 61		111	COM18	162	P02/D2	214	SEG0
9 10 11 12	SEG44 SEG45 SEG46	61	SEG95	111	COM17	163	P01/D1	215	SEG1
9 10 11 12	SEG44 SEG45 SEG46			112	COM16	164	P00/D0	216	SEG2
11 12	SEG45 SEG46		SEG96	113	VD2	165	R00/A0	217	SEG3
11 12	SEG46	62	N.C.	114	CG	166	R01/A1	218	SEG4
12		63	N.C.	115	CF	167	R02/A2	219	SEG5
		64	N.C.	116	CE	168	R03/A3	220	SEG6
	SEG48	65	N.C.	117	CD	169	R04/A4	221	SEG7
14	SEG49	66	N.C.	118	CC	170	R05/A5	222	SEG8
15	SEG50	67	Vss	119	CB	170	R06/A6	223	SEG9
16	SEG50	68	SEG97	120	CA	172	R07/A7	223	SEG10
17	SEG51 SEG52	69	SEG97 SEG98	120	VC5	172	R10/A8	224	SEG10 SEG11
18	SEG52 SEG53	70	SEG99	121	VC3 VC4	173	R11/A9	223	SEG11 SEG12
19	SEG54	71	SEG100	123	VC3	175	R12/A10	227	SEG13
20	SEG55	72	SEG101	124	Vc2	176	R13/A11	228	SEG14
21	SEG56	73	SEG102	125	Vc1	177	R14/A12	229	SEG15
22	SEG57	74	SEG103	126	N.C.	178	R15/A13	230	SEG16
23	SEG58	75	SEG104	127	N.C.	179	R16/A14	231	SEG17
24	SEG59	76	SEG105	128	N.C.	180	R17/A15	232	SEG18
25	SEG60	77	SEG106	129	N.C.	181	R20/A16	233	SEG19
26	SEG61	78	SEG107	130	N.C.	182	R21/A17	234	SEG20
27	SEG62	79	SEG108	131	Vdd	183	R22/A18	235	SEG21
28	SEG63	80	SEG109	132	OSC3	184	R23/A19	236	SEG22
29	SEG64	81	SEG110	133	OSC4	185	$R24/\overline{RD}$	237	SEG23
30	SEG65	82	SEG111	134	Vss	186	R25/WR	238	SEG24
31	SEG66	83	SEG112	135	VD1	187	R30/CE0	239	SEG25
32	SEG67	84	SEG113	136	OSC1	188	R31/CE1	240	SEG26
33	SEG68	85	SEG114	137	OSC2	189	VDD	241	SEG27
34	SEG69	86	SEG115	138	TEST	190	N.C.	242	SEG28
35	SEG70	87	SEG116	139	RESET	191	N.C.	243	SEG29
36	SEG71	88	SEG117	140	MCU/MPU	192	N.C.	244	SEG30
37	SEG72	89	SEG118	141	K07/EXCL3	193	N.C.	245	SEG31
38	SEG73	90	SEG119	142	K06/EXCL2	194	N.C.	246	SEG32
39	SEG74	91	SEG120	143	K05/EXCL1	195	Vss	247	SEG33
40	SEG75	92	SEG121	144	K04/EXCL0	196	R32/CE2	248	SEG34
41	SEG76	93	SEG122	145	K03/BREQ	197	R33/BACK	249	SEG35
42	SEG77	94	SEG122	145	K02	198	COM0	250	SEG36
43	SEG78	95	SEG124	140	K01	199	COM1	250	SEG37
44	SEG79	96	SEG125	148	K00	200	COM2	252	SEG38
45	SEG80	97	COM31	140	P17/TOUT2/TOUT3	200	COM2 COM3	252	Vss
46	SEG80 SEG81	98	COM30	149	P16/FOUT	201	COM3 COM4	253	v 33 N.C.
40	SEG81 SEG82	98 99	COM30 COM29		P15/TOUT2/TOUT3	202	COM4 COM5	255	N.C.
		100			P13/TOUT2/TOUT3 P14/TOUT0/TOUT1	203 204			N.C.
48 49	SEG83	100	COM28	152 153	P14/10010/10011 P13/SRDY	204 205	COM6 COM7	256	n.c.
	SEG84		COM27		P13/SRDY P12/SCLK		COM7	-	-
50	SEG85	102	COM26	154		206	COM8	-	-
51 52	SEG86 SEG87	103 104	COM25 COM24	155 156	P11/SOUT P10/SIN	207 208	COM9 COM10	-	-

Fig. 1.3.1.1 S1C88650 pin layout

1.3.2 Pin description

D '	D' N		le 1.3.2.1 SIC88650 pin description
Pin name	Pin No.	In/Out	Function
VDD	131, 189	-	Power supply (+) terminal
Vss	67, 134, 195, 253	-	Power supply (GND) terminal
VDI	135	-	Internal logic system and oscillation system voltage regulator output terminals
VD2	113	-	LCD circuit power voltage booster output terminal
VC1-VC5	125-121	-	LCD drive voltage output terminals
CA-CG	120-114	-	LCD and power voltage booster capacitor connection terminals
OSC1	136	Ι	OSC1 oscillation input terminal (select crystal/CR oscillation by mask option)
OSC2	137	0	OSC1 oscillation output terminal
OSC3	132	Ι	OSC3 oscillation input terminal (select crystal/ceramic/CR oscillation by mask option)
OSC4	133	0	OSC3 oscillation output terminal
MCU/MPU	140	Ι	MCU/MPU mode setup terminal
K00-K02	148-146	Ι	Input terminals (K00–K02)
K03/BREQ	145	Ι	Input terminal (K03) or bus request signal input terminal (BREQ)
K04/EXCL0	144	Ι	Input terminal (K04) or programmable timer external clock input terminal (EXCL0)
K05/EXCL1	143	Ι	Input terminal (K05) or programmable timer external clock input terminal (EXCL1)
K06/EXCL2	142	Ι	Input terminal (K06) or programmable timer external clock input terminal (EXCL2)
K07/EXCL3	141	Ι	Input terminal (K07) or programmable timer external clock input terminal (EXCL3)
R00-R07/A0-A7	165-172	0	Output terminals (R00–R07) or address bus (A0–A7)
R10-R17/A8-A15	173-180	0	Output terminals (R10–R17) or address bus (A8–A15)
R20-R23/A16-A19	181-184	0	Output terminals (R20–R23) or address bus (A16–A19)
R24/RD	185	0	Output terminal (R24) or read signal output terminal (\overline{RD})
R25/WR	186	0	Output terminal (R25) or write signal output terminal (\overline{WR})
R30-R32/CE0-CE2	187, 188, 196	0	Output terminals (R30–R32) or chip enable signal output terminals ($\overline{CE0}$ – $\overline{CE2}$)
R33 (BACK)	197	0	Output terminal (R33) or bus acknowledge signal output terminal (BACK)
P00-P07/D0-D7	164–157	I/O	I/O terminals (P00–P07) or data bus (D0–D7)
P10/SIN	156	I/O	I/O terminal (P10) or serial I/F data input terminal (SIN)
P11/SOUT	155	I/O	I/O terminal (P11) or serial I/F data output terminal (SOUT)
P12/SCLK	154	I/O	I/O terminal (P12) or serial I/F clock I/O terminal (SCLK)
P13/SRDY	153	I/O	I/O terminal (P13) or serial I/F ready signal output terminal (SRDY)
P14/TOUT0/TOUT1	152	I/O	I/O terminal (P14)
	102	20	or programmable timer underflow signal output terminal (TOUT0/TOUT1)
P15/TOUT2/TOUT3	151	I/O	I/O terminal (P15)
115/10012/10015	151	10	or programmable timer underflow signal output terminal (TOUT2/TOUT3)
P16/FOUT	150	I/O	I/O terminal (P16) or clock output terminal (FOUT)
P17/TOUT2/TOUT3	149	1/O 1/O	I/O terminal (P10) of clock output terminal (POCT)
11,,10012,10013	177	1.0	or programmable timer underflow inverted signal output terminal ($\overline{\text{TOUT2}}/\overline{\text{TOUT3}}$)
COM0-COM31	198–213, 112–97	0	LCD common output terminals
SEG0-SEG125	214-252, 4-61,	0	LCD segment output terminals
5E00-5E0125	214–232, 4–01, 68–96	0	LeD segment output terminars
RESET	139	Ι	Initial reset input terminal
TEST	138	I	Test input terminal
		_	A
TEST	3	-	Test terminal (open during normal operation)

Table 1.3.2.1 S1C88650 pin description

1.4 Mask Option

Mask options shown below are provided for the S1C88650.

Several hardware specifications are prepared in each mask option, and one of them can be selected according to the application. Multiple specifications are available in each option item as indicated in the Option List.

PERIPHERAL CIRCUIT BOARD option list

Select the specifications that meet the target system and check the appropriate box.

The option selection is done interactively on the screen during function option generator winfog execution, using this option list as reference. Mask pattern of the IC is finally generated based on the data created by the winfog. Refer to the "S5U1C88000C Manual II" for details on the winfog.

The following shows the options for configuring the Peripheral Circuit Board (S5U1C88000P1 with S5U1C88649P2) installed in the ICE (S5U1C88000H5). The selections do not affect the IC's mask option.

A OSCI SYSTEM CLOCK

□ 1. Internal Clock □ 2. User Clock

B OSC3 SYSTEM CLOCK

 \Box 1. Internal Clock \Box 2. User Clock

When User Clock is selected, input a clock to the OSC1 terminal. When Internal Clock is selected, the clock frequency is changed according to the oscillation circuit selected by the IC's mask option.

When User Clock is selected, input a clock to the OSC3 terminal. When Internal Clock is selected, the clock frequency is changed according to the oscillation circuit selected by the IC's mask option.

S1C88650 mask option list

The following shows the option list for generating the IC's mask pattern. Note that the Peripheral Circuit Board installed in the ICE does not support some options.

1 OSCI SYSTEM CLOCK

 \Box 1. Crystal \Box 2. CR

2 OSC3 SYSTEM CLOCK

□ 1. Crystal □ 2. Ceramic □ 3. CR

3 MULTIPLE KEY ENTRY RESET

• Combination .. 🗆 1. Not Use

- □ 2. Use K00, K01
- □ 3. Use K00, K01, K02
- □ 4. Use K00, K01, K02, K03

4 INPUT PORT PULL UP RESISTOR

• K00 1. With Resistor	🗆 2. Gate Direct
• K01 1. With Resistor	2. Gate Direct
• K02 1. With Resistor	2. Gate Direct
• K03 1. With Resistor	2. Gate Direct
• K04 🗆 1. With Resistor	2. Gate Direct
• K05 1. With Resistor	2. Gate Direct
• K06 1. With Resistor	2. Gate Direct
• K07 1. With Resistor	2. Gate Direct
• MCU/ $\overline{\text{MPU}}$ \Box 1. With Resistor	2. Gate Direct
• $\overline{\text{RESET}}$ \Box 1. With Resistor	□ 2. Gate Direct

The specification of the OSC1 oscillation circuit can be selected from among two types: "Crystal oscillation" and "CR oscillation". Refer to Section 5.4.3, "OSC1 oscillation circuit", for details.

The specification of the OSC3 oscillation circuit can be selected from among three types: "Crystal oscillation", "Ceramic oscillation" and "CR oscillation". Refer to Section 5.4.4, "OSC3 oscillation circuit", for details.

This mask option can select whether the multiple key entry reset function is used or not. When the function is used, a combination of the input ports (K00–K03), which are connected to the keys, can be selected. Refer to Section 4.1.2, "Simultaneous LOW level input at input port terminals K00–K03", for details.

This mask option can select whether the pull-up resistor for the input (K) port terminal is used or not. It is possible to select for each bit of the input ports. Refer to Section 5.5, "Input Ports (K ports)", for details. Furthermore, a pull-up option is also provided for the MCU/MPU and RESET terminals.

5 I/O PORT PULL UP RESISTOR

- P00 1. With Resistor □ 2. Gate Direct • P01 🗆 1. With Resistor □ 2. Gate Direct • P02 1. With Resistor □ 2. Gate Direct • P03 🗆 1. With Resistor □ 2. Gate Direct • P04 🗆 1. With Resistor □ 2. Gate Direct • P05 🗆 1. With Resistor □ 2. Gate Direct • P06 🗆 1. With Resistor 2. Gate Direct • P07 🗆 1. With Resistor □ 2. Gate Direct • P10 🗆 1. With Resistor □ 2. Gate Direct • P11 🗆 1. With Resistor □ 2. Gate Direct • P12 D 1. With Resistor □ 2. Gate Direct • P13 🗆 1. With Resistor 2. Gate Direct • P14 🗆 1. With Resistor □ 2. Gate Direct • P15 🗆 1. With Resistor □ 2. Gate Direct • P16 🗆 1. With Resistor □ 2. Gate Direct • P17 🗆 1. With Resistor □ 2. Gate Direct 6 INPUT PORT INPUT I/F LEVEL □ 2. CMOS Schmitt
 - K01
 1. CMOS Level
 2. CMOS Schmitt

 K02
 1. CMOS Level
 2. CMOS Schmitt

 K03
 1. CMOS Level
 2. CMOS Schmitt

 K04
 1. CMOS Level
 2. CMOS Schmitt

 K05
 1. CMOS Level
 2. CMOS Schmitt

 K05
 1. CMOS Level
 2. CMOS Schmitt

 K06
 1. CMOS Level
 2. CMOS Schmitt

 K06
 1. CMOS Level
 2. CMOS Schmitt

 K07
 1. CMOS Level
 2. CMOS Schmitt

 K07
 1. CMOS Level
 2. CMOS Schmitt

7 I/O PORT INPUT I/F LEVEL

• P10 🗆 1. CMOS Level	🗆 2. CMOS Schmitt
• P11 🗆 1. CMOS Level	2. CMOS Schmitt
• P12 🗆 1. CMOS Level	2. CMOS Schmitt
• P13 🗆 1. CMOS Level	2. CMOS Schmitt
• P14 🗆 1. CMOS Level	2. CMOS Schmitt
• P15 🗆 1. CMOS Level	2. CMOS Schmitt
• P16 🗆 1. CMOS Level	2. CMOS Schmitt
• P17 🗆 1. CMOS Level	2. CMOS Schmitt

8 WATCHDOG TIMER NMI GENERATION CYCLE

□ 1. 32768/fOSC1

- (0.75–1-sec cycle when fOSC1 = 32 kHz) □ 2. 65536/fOSC1
 - $(1.5-2-\sec cycle when fOSC1 = 32 \text{ kHz})$
 - □ 3. 131072/fOSC1
 - (3–4-sec cycle when fOSC1 = 32 kHz) \Box 4. 262144/fOSC1
 - (6-8-sec cycle when fOSC1 = 32 kHz)

This mask option can select whether the pull-up resistor for the I/O port terminal (it works during input mode) is used or not. It is possible to select for each bit of the I/O ports. Refer to Section 5.7, "I/O Ports (P ports)", for details.

This mask option can select the interface level of the input (K) port from either the CMOS level or CMOS Schmitt level. It is possible to select for each bit of the input ports. Refer to Section 5.5, "Input Ports (K ports)", for details.

The input port on the ICE (with the Peripheral Circuit Board installed) is fixed to the CMOS level interface regardless of this option selection.

This mask option can select the interface level of the I/O (P) port from either the CMOS level or CMOS Schmitt level. It is possible to select for each bit of the I/O ports. Refer to Section 5.7, "I/O Ports (P ports)", for details. The input port on the ICE (with the Peripheral Circuit Board installed) is fixed to the CMOS level interface regardless of this option selection.

This mask option can select the $\overline{\rm NMI}$ generation cycle of the watchdog timer. Refer to Section 5.3.1, "Configuration of watchdog timer", for details.

2 POWER SUPPLY

In this section, we will explain the operating voltage and the configuration of the internal power supply circuit of the S1C88650.

2.1 Operating Voltage

The S1C88650 operating power voltage is as follows:

1.8 V to 3.6 V

2.2 Internal Power Supply Circuit

The S1C88650 incorporates the power supply circuit shown in Figure 2.2.1. When voltage within the range described above is supplied to VDD (+) and Vss (GND), all the voltages needed for the internal circuit are generated internally in the IC.

Roughly speaking, the power supply circuit is divided into three sections.

Table 2.2.1 Power supply circuit

Circuit	Power supply circuit	Output voltage
Oscillation circuits,	Internal logic	VD1
Internal circuits	voltage regulator	
LCD system voltage	Power voltage	VDD or VD2
regulator	booster	
LCD driver	LCD system voltage	VC1–VC5
	regulator	

The internal logic voltage regulator generates the operating voltage <VD1> for driving the internal logic circuits and the oscillation circuit. The VD1 voltage value is fixed at 1.8 V (Typ.).

The power voltage booster generates the operating voltage <VD2> for the LCD system voltage regulator.

Either <VDD> or <VD2> can be selected as the power source for the LCD system voltage regulator according to the <VDD> power supply voltage level.

<i>Table 2.2.2</i>	Power source for LCD system
	voltage regulator

	0 0
Supply voltage	Power source for
Vdd	LCD system voltage regulator
1.8–2.5 V	VD2
2.5–3.6 V	VDD

The VD2 voltage is about double the VDD voltage level. Refer to Chapter 8, "ELECTRICAL CHARACTERISTICS", for details.

The LCD system voltage regulator generates the 1/ 5-bias LCD drive voltages <VC1>, <VC2>, <VC3>, <VC4> and <VC5>. See Chapter 8, "ELECTRICAL CHARACTERISTICS" for the voltage values.

In the S1C88650, the LCD drive voltage is supplied to the built-in LCD driver which drives the LCD panel connected to the SEG and COM terminals.

- Notes: Under no circumstances should VD1, VD2, VC1, VC2, VC3, VC4 and VC5, terminal output be used to drive external circuit.
 - If VDD is used as the power source for the LCD system voltage regulator when VDD is 2.5 V or less, the VC1 to VC5 voltages cannot be generated within specifications.

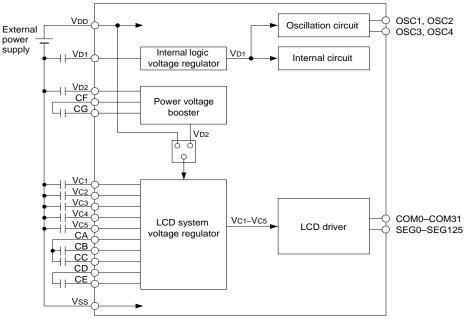


Fig. 2.2.1 Configuration of power supply circuit

EPSON

3 CPUAND BUS CONFIGURATION

In this section, we will explain the CPU, operating mode and bus configuration.

3.1 CPU

The S1C88650 utilize the S1C88 8-bit core CPU whose resistor configuration, command set, etc. are virtually identical to other units in the family of processors incorporating the S1C88.

See the "S1C88 Core CPU Manual" for the S1C88.

Specifically, the S1C88650 employ the Model 3 S1C88 CPU which has a maximum address space of 1M bytes \times 3.

3.2 Internal Memory

The S1C88650 is equipped with internal ROM and RAM as shown in Figure 3.2.1. Small scale applications can be handled by one chip. It is also possible to utilize internal memory in combination with external memory.

Furthermore, internal ROM can be disconnected from the bus and the resulting space released for external applications.

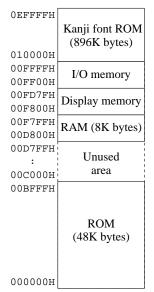


Fig. 3.2.1 Internal memory map

3.2.1 Program ROM

The S1C88650 has a built-in 48K-byte program ROM. The ROM is allocated to 000000H–00BFFFH. This ROM areas shown above can be released to external memory depending on the setting of the MCU/\overline{MPU} terminal. (See "3.5 Chip Mode".)

3.2.2 RAM

The internal RAM capacity is 8K bytes and is allocated to 00D800H–00F7FFH. Even when external memory which overlaps the internal RAM area is expanded, the RAM area is not released to external memory. Access to this area is via internal RAM.

3.2.3 I/O memory

A memory mapped I/O method is employed in the S1C88650 for interfacing with internal peripheral circuit. Peripheral circuit control bits and data register are arranged in data memory space. Control and data exchange are conducted via normal memory access. I/O memory is arranged in page 0: 00FF00H–00FFFFH area.

See Section 5.1, "I/O Memory Map", for details of the I/O memory.

Even when external memory which overlaps the I/ O memory area is expanded, the I/O memory area is not released to external memory. Access to this area is via I/O memory.

3.2.4 Display memory

The S1C88650 is equipped with an internal display memory which stores a display data for LCD driver.

Display memory is arranged in page 0: 00Fx00H– 00Fx7FH (x = 8–DH) in the data memory area. See Section 5.11, "LCD Driver", for details of the display memory. Like the I/O memory, display memory cannot be released to external memory.

3.2.5 Kanji font ROM

The S1C88650 has a built-in kanji font ROM that can be used to store JIS level-1 and level-2 kanji sets, alphanumeric characters and music shift-JIS characters.

The kanji font ROM capacity is 896K bytes and is allocated to 010000H–0EFFFFH.

When the kanji font is not used the remaining area or the entire area can be used for a program and data storage area (see the "S5U1C88xxxRx Manual" for use of font data).

This ROM areas shown above can be released to external memory depending on the setting of the MCU/\overline{MPU} terminal. (See "3.5 Chip Mode".)

3.3 Exception Processing Vectors

000000H–00004BH in the program area of the S1C88650 is assigned as exception processing vectors. Furthermore, from 00004EH to 0000FFH, software interrupt vectors are assignable to any two bytes which begin with an even address. Table 3.3.1 lists the vector addresses and the exception processing factors to which they correspond.

Table 3.3.1	Exception	processing	vector table
-------------	-----------	------------	--------------

Vector	Exception processing factor	Priority
address		
000000H	Reset	High
000002H	Zero division	, T
000004H	Watchdog timer (NMI)	
000006H	K07 input interrupt	
000008H	K06 input interrupt	
00000AH	K05 input interrupt	
00000CH	K04 input interrupt	
00000EH	K03 input interrupt	
000010H	K02 input interrupt	
000012H	K01 input interrupt	
000014H	K00 input interrupt	
000016H	PTM 0 underflow interrupt	
000018H	PTM 0 compare match interrupt	
00001AH	PTM 1 underflow interrupt	
00001CH	PTM 1 compare match interrupt	
00001EH	PTM 2 underflow interrupt	
000020H	PTM 2 compare match interrupt	
000022H	PTM 3 underflow interrupt	
000024H	PTM 3 compare match interrupt	
000026H	System reserved (cannot be used)	
000028H	Serial I/F error interrupt	
00002AH	Serial I/F receiving complete interrupt	
00002CH	Serial I/F transmitting complete interrupt	
00002EH	System reserved (cannot be used)	
000030H	System reserved (cannot be used)	
000032H	System reserved (cannot be used)	
000034H	Clock timer 32 Hz interrupt	
000036H	Clock timer 8 Hz interrupt	
000038H	Clock timer 2 Hz interrupt	
00003AH	Clock timer 1 Hz interrupt	
00003CH	PTM 4 underflow interrupt	
00003EH	PTM 4 compare match interrupt	
000040H	PTM 5 underflow interrupt	
000042H	PTM 5 compare match interrupt	
000044H	PTM 6 underflow interrupt	
000046H	PTM 6 compare match interrupt	
000048H	PTM 7 underflow interrupt	\downarrow
00004AH	PTM 7 compare match interrupt	Low
00004CH	System reserved (cannot be used)	
00004EH		No
:	Software interrupt	priority
0000FEH	The second se	rating

For each vector address and the address after it, the start address of the exception processing routine is written into the subordinate and super ordinate sequence. When an exception processing factor is generated, the exception processing routine is executed starting from the recorded address. When multiple exception processing factors are generated at the same time, execution starts with the highest priority item.

The priority sequence shown in Table 3.3.1 assumes that the interrupt priority levels are all the same. The interrupt priority levels can be set by software in each system. (See Section 5.14, "Interrupt and Standby Status".)

See the "S1C88 Core CPU Manual" for information on CPU operations when an exception processing factor is generated.

3.4 CC (Customized Condition Flag)

The S1C88650 does not use the customized condition flag (CC) in the core CPU. Accordingly, it cannot be used as a branching condition for the conditional branching instruction (JRS, CARS).

3.5 Chip Mode

3.5.1 MCU mode and MPU mode

The chip operating mode can be set to one of two settings using the MCU/\overline{MPU} terminal.

MCU mode...Set the MCU/MPU terminal to HIGH Switch to this setting when using internal ROM. With respect to areas other than internal memory, external memory can even be expanded. See Section 3.5.2, "Bus mode", for the memory map.

In the MCU mode, during initial reset, only systems in internal memory are activated. Internal program ROM is normally fixed as the top portion of the program memory from the common area (logical space 0000H-7FFFH). Exception processing vectors are assigned in internal program ROM. Furthermore, the application initialization routines that start with reset exception processing must likewise be written to internal program ROM. Since bus and other settings which correlate with external expanded memory can be executed in software, this processing is executed in the initialization routine written to internal program ROM. Once these bus mode settings are made, external memory can be accessed.

Note: For exception processing other than reset, SC (system condition flag) and PC (program counter) are evacuated to the stack and branches to the exception processing routines. Consequently, when returning to the main routine from exception processing routines, please use the RETE instruction.

3 CPU AND BUS CONFIGURATION

When accessing internal memory in this mode, the chip enable (\overline{CE}) and read (\overline{RD}) /write (\overline{WR}) signals are not output to external memory, and the data bus (D0–D7) goes into high impedance status (or pull-up status).

Consequently, in cases where addresses overlap in external and internal memory, the areas in external memory will be unavailable.

MPU mode...Set the MCU/MPU terminal to LOW Internal ROM area is released to an external device source. Internal ROM then becomes unusable and when this area is accessed, chip enable (CE) and read (RD)/write (WR) signals are output to external memory and the data bus (D0–D7) become active. These signals are not output to an external source when other areas of internal memory are accessed.

In the MPU mode, the system is activated by external memory.

When employing this mode, the exception processing vectors and initialization routine must be assigned within the common area (000000H–007FFFH).

You can select whether to use the built-in pull-up resistor of the MCU/\overline{MPU} terminal by the mask option.

lput port pull-up resistor MCU/\overline{MPU} \Box With resistor \Box Gate direct

- Notes: Setting of MCU/MPU terminal is latched at the rising edge of a reset signal input from the RESET terminal. Therefore, if the setting is to be changed, the RESET terminal must be set to LOW level once again.
 - The data bus while the CPU accesses to the internal memory can be select into high-impedance status or pulled up to high using the pull-up control register and mask option. See Section 5.7, "I/O Ports (P ports)", for details.

3.5.2 Bus mode

In order to set bus specifications to match the configuration of external expanded memory, two different bus modes described below are selectable in software.

Single chip mode

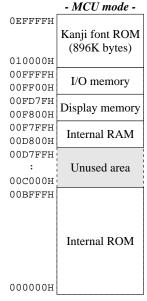


Fig. 3.5.2.1 Memory map for the single chip mode

The single chip mode setting applies when the S1C88650 is used as a single chip microcomputer without external expanded memory. Since this mode employs internal ROM, the system can only be operated in the MCU mode discussed in Section 3.5.1.

In the MPU mode, the system cannot be set to the single chip mode.

Since there is no need for an external bus line in this mode, terminals normally set for bus use can be used as general purpose output ports or I/O ports.

Expansion mode

The expansion mode setting applies when the S1C88650 is used with less than 1M bytes \times 3 of external expanded memory. This mode is usable regardless of the MCU/MPU mode setting.

Because internal ROM is being used in the MCU mode, external memory in this model can be assigned to the area from 100000H to 3FFFFFH. Since the internal ROM area is released in the MPU mode, external memory in this model can be assigned to the area from 000000H to 2FFFFFH.

However, the area from 00C000H to 00FFFFH is assigned to internal memory and cannot be used to access an external device.

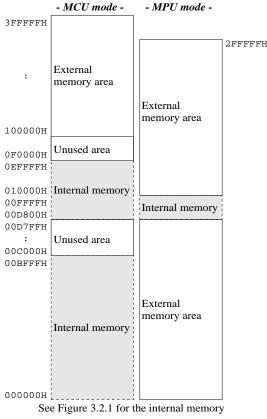


Fig. 3.5.2.2 Memory map for the expansion mode

There is an explanation on how all these settings are actually made in "5.2 System Controller and Bus Control" of this Manual.

3.5.3 CPU mode

The CPU allows software to select its operating mode from two types shown below according to the programming area size.

Minimum mode

The program area is configured within 64K bytes in any one-bank. However, the bank to be used must be specified in the CB register and cannot be changed after an initialization. This mode does not push the CB register contents onto the stack when a subroutine is called. It makes it possible to economize on stack area usage. This mode is suitable for small- to midscale program memory and large-scale data memory systems.

Maximum mode

The program area can be configured exceeding 64K bytes. However the CB register must be setup when the program exceeds a bank boundary every 64K bytes. This mode pushes the CB register contents when a subroutine is called. This mode is suitable for large-scale program and data memory systems.

3.6 External Bus

The S1C88650 has bus terminals that can address a maximum of $1M \times 3$ bytes and memory (and other) devices can be externally expanded according to the range of each bus mode described in the previous section.

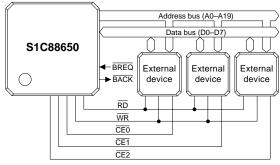


Fig. 3.6.1 External bus lines

Below is an explanation of external bus terminals. For information on control methods, see Section 5.2, "System Controller and Bus Control".

3.6.1 Data bus

The S1C88650 possesses an 8-bit external data bus (D0–D7). The terminals and I/O circuits of data bus D0–D7 are shared with I/O ports P00–P07, switching between these functions being determined by the bus mode setting.

In the single chip mode, the 8-bit terminals are all set as I/O ports P00–P07 and in the expansion mode, they are set as data bus (D0–D7). When set as data bus, the data register and I/O control register of each I/O port are detached from the I/O circuits and usable as a general purpose data register with read/write capabilities.

The data bus can be pulled up to high during input mode using the built-in pull-up resistor. This pullup resistor is enabled or disabled using the pull-up control register and mask option. See "5.7 I/O Ports" for details.

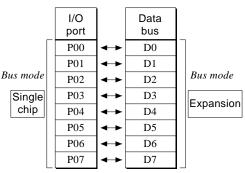


Fig. 3.6.1.1 Correspondence between data bus and I/O ports

3.6.2 Address bus

The S1C88650 possesses a 20-bit external address bus A0–A19. The terminals and output circuits of address bus A0–A19 are shared with output ports R00–R07 (=A0–A7), R10–R17 (=A8–A15) and R20– R23 (=A16–A19), switching between these functions being determined by the bus mode setting. In the single chip mode, the 20-bit terminals are all set as output ports R00–R07, R10–R17 and R20–R23. In the expansion mode, all of the 20-bit terminals are set as the address bus (A0–A19).

When set as an address bus, the data register and high impedance control register of each output port are detached from the output circuit and used as a general purpose data register with read/write capabilities.

	Output port		Address bus	
	R00	<►	A0	
	R01	<->	A1	
	R02	<->	A2	
	R03	<->	A3	
	R04	<->	A4	
	R05	<->	A5	
	R06	<->	A6	
	R07	<->	A7	
Bus mode	R10	<->	A8	Bus mode
Single	R11	<->	A9	Expansion
chip	R12	<->	A10	Lapansion
	R13	<->	A11	
	R14	<->	A12	
	R15	<->	A13	
	R16	<->	A14	
	R17	<►	A15	
	R20	<->	A16	
	R21	<->	A17	
	R22	↔	A18	
	R23	↔	A19	

Fig. 3.6.2.1 Correspondence between address bus and output ports

3.6.3 Read (\overline{RD}) /write (\overline{WR}) signals

The output terminals and output circuits for the read $(\overline{RD})/write (\overline{WR})$ signals directed to external devices are shared respectively with output ports R24 and R25, switching between these functions being determined by the bus mode setting. In the single chip mode, both of these terminals are set as output port terminals and in the expansion mode, they are set as read $(\overline{RD})/write (\overline{WR})$ signal output terminals.

When set as read $(\overline{\text{RD}})/\text{write}$ $(\overline{\text{WR}})$ signal output terminal, the data register and high impedance control register for each output port (R24, R25) are detached from the output circuit and is usable as a general purpose data register with read/write capabilities.

See Section 3.6.5, "WAIT control", for the output timing of the signal.

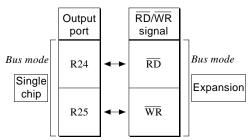


Fig. 3.6.3.1 Correspondence between read $(\overline{RD})/$ write (\overline{WR}) signal and output ports

3.6.4 Chip enable (\overline{CE}) signal

The S1C88650 is equipped with address decoders which can output three different chip enable $\overline{(CE)}$ signals.

Consequently, three devices equipped with a chip enable ($\overline{\text{CE}}$) or chip select ($\overline{\text{CS}}$) terminal can be directly connected without setting the address decoder to an external device.

The three chip enable ($\overline{CE0}$ – $\overline{CE2}$) signal output terminals and output circuits are shared with output ports R30–R32 and in the expansion mode, either the chip enable (\overline{CE}) output or general output can be selected in software for each of the three bits. When set for chip enable (\overline{CE}) output, the data register and high impedance control register for each output port are detached from the output circuit and is usable as general purpose data register with read/write capabilities. In the single chip mode, these terminals are set as output ports R30–R32.

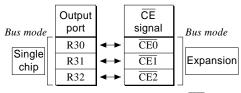


Fig. 3.6.4.1 Correspondence between \overline{CE} signals and output ports

Table 3.6.4.1 shows the address ranges which are assigned to the chip enable $\overline{(\overline{CE})}$ signal in the expansion mode.

	Address range (e	expansion mode)
CE signal	MCU mode	MPU mode
CE0	300000H-3FFFFH	000000H-00D7FFH, 010000H-0FFFFFH
CE1	100000H-1FFFFH	100000H-1FFFFFH
CE2	200000H-2FFFFH	200000H-2FFFFFH

Table 3.6.4.1 $\overline{CE0}$ – $\overline{CE2}$ address settings

When accessing the internal memory area, the \overline{CE} signal is not output. Care should be taken here because the address range for these portions of memory involves irregular settings. The arrangement of memory space for external devices does not necessarily have to be continuous from a subordinate address and any of the chip enable signals can be used to assign areas in memory.

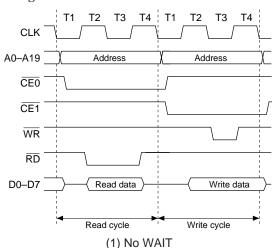
Note: The CE signals will be inactive status when the chip enters the standby mode (HALT mode or SLEEP mode).

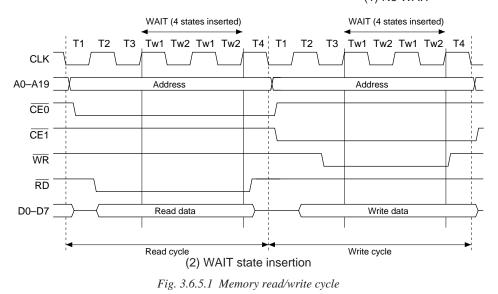
See Section 3.6.5, "WAIT control", for the output timing of signal.

3.6.5 WAIT control

In order to insure accessing of external low speed devices during high speed operations, the S1C88650 is equipped with a WAIT function which prolongs access time. (See the "S1C88 Core CPU Manual" for details of the WAIT function.)

The WAIT state numbers to be inserted can be selected in software from a series of 8 as shown in Table 3.6.5.1.


Selection No.	1	2	3	4	5	6	7	8
Insert states	0	2	4	6	8	10	12	14


* One state is a 1/2 cycle of the clock in length.

The WAIT states set in software are inserted between bus cycle states T3–T4.

Note, however, that WAIT states cannot be inserted when an internal register and internal memory are being accessed and when operating with the OSC1 oscillation circuit (see "5.4 Oscillation Circuits"). Consequently, WAIT state settings are meaningless in the single chip mode.

Figure 3.6.5.1 shows the memory read/write timing charts.

EPSON

3.6.6 Bus authority release state

The S1C88650 is equipped with a bus authority release function on request from an external device so that DMA (Direct Memory Access) transfer can be conducted between external devices. The internal memory cannot be accessed by this function.

There are two terminals used for this function: the bus authority release request signal (\overline{BREQ}) input terminal and the bus authority release acknowledge signal (\overline{BACK}) output terminal.

The BREQ input terminal is shared with input port terminal K03 and the BACK output terminal with output port terminal R33, use with setting to BREQ/BACK terminals done in software. In the single chip mode, or when using a system which does not require bus authority release, set respective terminals as input and output ports.

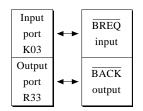


Fig. 3.6.6.1 BREQ/BACK terminals

When the bus authority release request (\overline{BREQ} = LOW) is received from an external device, the S1C88650 switches the address bus, data bus, \overline{RD} / \overline{WR} signal, and \overline{CE} signal lines to a high impedance state, outputs a LOW level from the BACK terminal and releases bus authority.

As soon as a LOW level is output from the BACK terminal, the external device can use the external bus. When DMA is completed, the external device returns the BREQ terminal to HIGH and releases bus authority.

Figure 3.6.6.2 shows the bus authority release sequence.

During bus authority release state, internal memory cannot be accessed from the external device. In cases where external memory has areas which overlap areas in internal memory, the external memory areas can be accessed accordance with the $\overline{\text{CE}}$ signal output by the external device.

Note: Be careful with the system, such that an external device does not become the bus master, other than during the bus release status.

After setting the BREQ terminal to LOW level, hold the BREQ terminal at LOW level until the BACK terminal becomes LOW level. If the BREQ terminal is returned to HIGH level, before the BACK terminal becomes LOW level, the shift to the bus authorization release status will become indefinite.

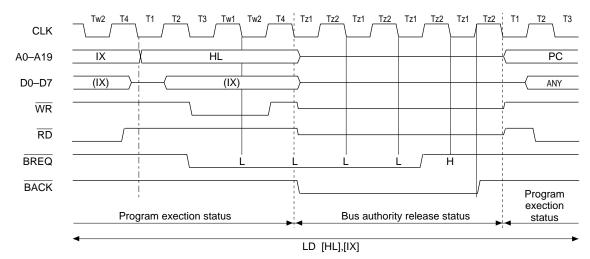


Fig. 3.6.6.2 Bus authority release sequence

4 INITIAL RESET

Initial reset in the S1C88650 is required in order to initialize circuits. This section of the Manual contains a description of initial reset factors and the initial settings for internal registers, etc.

4.1 Initial Reset Factors

There are two initial reset factors for the S1C88650 as shown below.

- (1) External initial reset by the RESET terminal
- (2) External initial reset by the simultaneous LOW level input at input port terminals K00-K03 (mask option)

Figure 4.1.1 shows the configuration of the initial reset circuit.

The CPU and peripheral circuits are initialized by means of initial reset factors. When the factor is canceled, the CPU commences reset exception processing. (See the "S1C88 Core CPU Manual".) When this occurs, the reset exception processing vector, Bank 0, 000000H-000001H from program memory is read out and the program (initialization routine) which begins at the readout address is executed.

4.1.1 **RESET** terminal

Initial reset can be done by externally inputting a LOW level to the RESET terminal.

Be sure to maintain the RESET terminal at LOW level for the regulation time after the power on to assure the initial reset. (See Section 8.6, "AC Characteristics".)

In addition, be sure to use the $\overline{\text{RESET}}$ terminal for the first initial reset after the power is turned on. The **RESET** terminal is equipped with a pull-up resistor. You can select whether or not to use by mask option.

Input port pull-up resistor RESET With resistor □ Gate direct

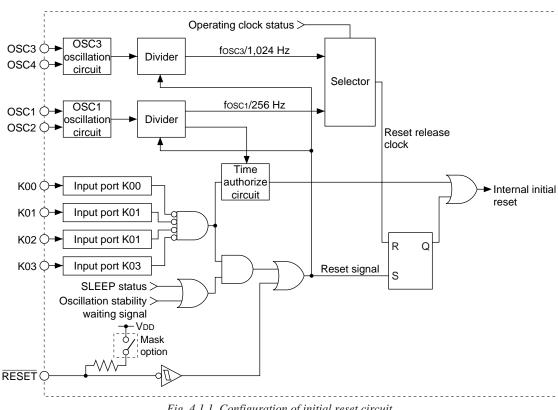


Fig. 4.1.1 Configuration of initial reset circuit

4.1.2 Simultaneous LOW level input at input port terminals K00–K03

Another way of executing initial reset externally is to input a LOW level simultaneously to the input ports (K00–K03) selected by mask option. Since there is a built-in time authorize circuit, be sure to maintain the designated input port terminal at LOW level for 65536/fosc1 seconds (two seconds when the oscillation frequency is fosc1 = 32.768kHz) or more to perform the initial reset by means of this function.

However, the time authorize circuit is bypassed during the SLEEP (standby) status and oscillation stabilization waiting period, and initial reset is executed immediately after the simultaneous LOW level input to the designated input ports. The combination of input ports (K00–K03) that can be selected by mask option are as follows:

Multiple key entry reset Not use K00 & K01 K00 & K01 & K02 K00 & K01 & K02 & K03

For instance, let's say that mask option "K00 & K01 & K02 & K03" is selected, when the input level at input ports K00–K03 is simultaneously LOW, initial reset will take place.

When using this function, make sure that the designated input ports do not simultaneously switch to LOW level while the system is in normal operation.

4.1.3 Initial reset sequence

After cancellation of the LOW level input to the $\overline{\text{RESET}}$ terminal, when the power is turned on, the start-up of the CPU is held back until the oscillation stabilization waiting time (512/fosc3 sec.) have elapsed.

Figure 4.1.3.1 shows the operating sequence following initial reset release. The CPU starts operating in synchronization with the OSC3 clock after reset status is released.

Also, when using the initial reset by simultaneous LOW level input into the input port, you should be careful of the following points.

- (1) During SLEEP status, since the time authorization circuit is bypassed, an initial reset is triggered immediately after a LOW level simultaneous input value. In this case, the CPU starts after waiting the oscillation stabilization time, following cancellation of the LOW level simultaneous input.
- (2) Other than during SLEEP status, an initial reset will be triggered 65536/fosc3 seconds after a LOW level simultaneous input. In this case, since a reset differential pulse (64/fosc1 seconds) is generated within the S1C88650, the CPU will start even if the LOW level simultaneous input status is not canceled.
- Note: The oscillation stabilization time described in this section does not include oscillation start time. Therefore the time interval until the CPU starts executing instructions after power is turned on or SLEEP status is cancelled may be longer than that indicated in the figure below.

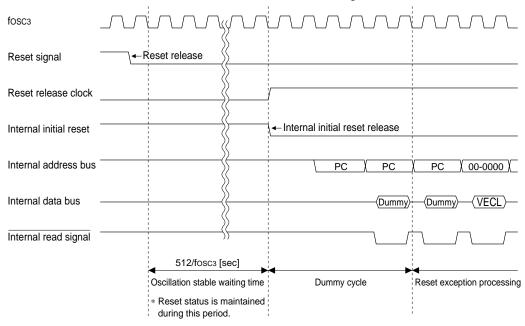


Fig. 4.1.3.1 Initial reset sequence
EPSON

4.2 Initial Settings After Initial Reset

The CPU internal registers are initialized as follows during initial reset.

<i>Table 4.2.1</i>	Initia	settings	
Register name	Code	Bit length	Setting value
Data register A	A	8	Undefined
Data register B	В	8	Undefined
Index (data) register L	L	8	Undefined
Index (data) register H	Н	8	Undefined
Index register IX	IX	16	Undefined
Index register IY	IY	16	Undefined
Program counter	PC	16	Undefined*
Stack pointer	SP	16	Undefined
Base register	BR	8	Undefined
Zero flag	Z	1	0
Carry flag	C	1	0
Overflow flag	V	1	0
Negative flag	N	1	0
Decimal flag	D	1	0
Unpack flag	U	1	0
Interrupt flag 0	IO	1	1
Interrupt flag 1	I1	1	1
New code bank register	NB	8	01H
Code bank register	CB	8	Undefined*
Expand page register	EP	8	00H
Expand page register for IX	XP	8	00H
Expand page register for IY	YP	8	00H

Table 4.2.1 Initial settings

* Reset exception processing loads the preset values stored in 0 bank, 0000H–0001H into the PC. At the same time, 01H of the NB initial value is loaded into CB.

Initialize the registers which are not initialized at initial reset using software.

Since the internal RAM and display memory are not initialized at initial reset, be sure to initialize using software.

The respectively stipulated initializations are done for internal peripheral circuits. If necessary, the initialization should be done using software. For initial value at initial reset, see the sections on the I/O memory map and peripheral circuit descriptions in the following chapter of this manual.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION

The peripheral circuits of the S1C88650 is interfaced with the CPU by means of the memory mapped I/O method. For this reason, just as with other memory access operations, peripheral circuits can be controlled by manipulating I/O memory. Below is a description of the operation and control method for each individual peripheral circuit.

5.1 I/O Memory Map

A -l -l	D:4	Nerror				mory map (0				DAA	0
Address	Bit	Name	Dere er de	Fur	nction		1	0	SR	R/W	Comment
00FF00			Bus mode				Expansion	Single chip	0	R/W	
(MCU)		CPUMOD	CPU mode				Maximum	Minimum	0	R/W	D
	D5	-	R/W registe				1	0	0	R/W	Reserved register
	D4	-	R/W registe				1	0	0	R/W	
	D3	-	R/W registe	_	1	11 (5) 11	1	0	0	R/W	
	D2	CE2		-	-	able/Disable	CE2 enable	CE2 disable	0	R/W	<u> </u>
		CE1	$\overline{CE1}$ (R31)		-	-	CE1 enable	CE1 disable	0	R/W	these setting are fixe
005500		CE0	CE0 (R30)_	Disable:	DC (R3x) o	output	CE0 enable	CE0 disable	0	R/W	at DC output.
00FF00			Bus mode				Expansion	-	1	R	Expansion mode or
(MPU)	D6	CPUMOD	CPU mode				Maximum	Minimum	0	R/W	D
	D5	-	R/W registe				1	0	0	R/W	Reserved register
	D4	-	R/W registe				1	0	0	R/W	
	D3	-	R/W registe				1	0	0	R/W	
		CE2		-	-	able/Disable	CE2 enable	CE2 disable	0	R/W	
		CE1	CE1 (R31)		0	•	CE1 enable	CE1 disable	0	R/W	
005504		CE0	CE0 (R30)_				CE0 enable	CE0 disable	1	R/W	
00FF01		SPP7	Stack pointe	er page ad	dress	(MSB)	1	0		R/W	
		SPP6					1	0	0	R/W	
		SPP5	< SP page a				1	0	0	R/W	
		SPP4	• Single chip mode: only 0 page				1	0		R/W	
		SPP3	• Expansion mode: 0–27H page				1	0	0	R/W	
		SPP2					1	0	0	R/W	
		SPP1					1	0	0	R/W	
		SPP0	~ .			(LSB)	1	0	0	R/W	
00FF02	D7	EBR	Bus release		-	K03	BREQ	Input port	0	R/W	
			(K03 and R		al specifica	tion) ¦ R33	BACK	Output port	-		
	D6	WT2	Wait contro	-		Number			0	R/W	
			<u>WT2</u>	<u>WT1</u>	WTO	of state					
			1	1	1 0	14					
	D5	WT1	1	0	1	12 10			0	R/W	
			1	0	0	8					
			0	1	1	6					
	D4	WT0	0	1	0	4			0	R/W	
			0	0	1 0	2					
	_		-	-	-	No wait					
			CPU operat	-			OSC3	OSC1	1	R/W	
	D2	SOSC3	OSC3 oscill		Off control		On	Off	1	R/W	
	D1	-	R/W registe				1	0	0	R/W	Reserved register
	D0	-	R/W registe	r			1	0	0	R/W	
00FF03	D7	-	-				-	-	-		Constantly "0" who
	D6	-	-				-	-	-		being read
	D5	-	-				-	-	-		
	D4	-	-				-	-	-		
	D3	-	-				-	-	-		
	D2	-	-				-	-	-		
	D1	VDSEL	Power source	e select fo	or LCD volt	age regulator	VD2	VDD	0	R/W	
	D0	DBON	Power volta	ge booste	r On/Off co	ontrol	On	Off	0	R/W	

Note: All the interrupts including MMI are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF10			Heavy load protection mode	On	Off	0	R/W	
			Reverse SEG assignment	Reverse	Normal	0	R/W	
	D5	_	R/W register	1	0	0	R/W	Reserved register
	D4	-	R/W register	1	0	0	R/W	
	D3	-	R/W register	1	0	0	R/W	
	D2	DTFNT	LCD dot font selection	12×12	16×16/5×8	0	R/W	
	D1	LDUTY1	LCD drive duty selection			1	R/W	
			LDUTY1 LDUTY0 Duty					
			1 1 Not allowed					
	D0	LDUTY0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
00FF11	D7	FRMCS	LCD frame signal source clock selection	PTM	fosc1	0	R/W	
			LCD display memory area selection		Display area 0	0	R/W	
	D5	LCDC1	LCD display control	1.2	1.2	0	R/W	These bits are reset
			LCDC1 LCDC0 LCD display					to (0, 0) when
			1 1 All LCDs lit					SLP instruction
	D4	LCDC0	1 0 All LCDs out			0	R/W	is executed.
			0 1 Normal display 0 0 Drive off					
	D3	LC3	LCD contrast adjustment			0	R/W	
			LC3 LC2 LC1 LC0 Contrast					
		LC2	1 1 1 1 Dark			0	R/W	
	D1	LC1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	LC0	0 0 0 0 Light			0	R/W	
00FF12	D7	-		-	-	_		Constantly "0" when
	D6	-		-	-	_		being read
	D5	SVDDT	SVD detection data	Low	Normal	0	R	
	D4	SVDON	SVD circuit On/Off	On	Off	0	R/W	
	D3	SVDS3	SVD criteria voltage setting			0	R/W	
	D2	SVDS2	$\frac{\text{SVDS3}}{1} \frac{\text{SVDS2}}{1} \frac{\text{SVDS1}}{1} \frac{\text{SVDS0}}{1} \frac{\text{Voltage (V)}}{2.7}$			0	R/W	
	D1	SVDS1	1 1 1 0 2.6			0	R/W	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
		SVDS0	0 0 1 1 1.8			0	R/W	
00FF14		PRPRT1	Programmable timer 1 clock control	On	Off	0	R/W	
	D6	PST12	Programmable timer 1 division ratio PST12 PST11 PST10 (OSC3) (OSC1)			0	R/W	
			$\frac{10112}{1} \frac{10111}{1} \frac{10110}{1} \frac{(0000)}{10000} \frac{(0000)}{10000} \frac{(0000)}{10000}$					
	D5	PST11	1 1 0 fosc3 / 1024 fosc1 / 64			0	R/W	
			1 0 1 fosc3 / 256 fosc1 / 32 1 0 0 fosc3 / 64 fosc1 / 16					
		DOTAO	0 1 1 fosc3 / 32 fosc1 / 8					
	D4	PST10	0 1 0 fosc3 / 8 fosc1 / 4 0 0 1 fosc3 / 2 fosc1 / 2			0	R/W	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	D3	PRPRT0	Programmable timer 0 clock control	On	Off	0	R/W	
	D2	PST02	Programmable timer 0 division ratio			0	R/W	
			$\frac{\text{PST02}}{1} \frac{\text{PST01}}{1} \frac{\text{PST00}}{1} \frac{(\text{OSC3})}{\text{form} (4000)} \frac{(\text{OSC1})}{\text{form} (120)}$					
	 D4	DOTO	1 1 1 fosc3 / 4096 fosc1 / 128 1 1 0 fosc3 / 1024 fosc1 / 64					
	ויט	PST01	1 0 1 fosc3 / 256 fosc1 / 32			0	R/W	
			1 0 0 fosc3 / 64 fosc1 / 16 0 1 1 fosc3 / 32 fosc1 / 8					
	D0	PST00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
			0 0 1 fosc3/2 fosc1/2					
			0 0 0 fosc3 / 1 fosc1 / 1					

 Table 5.1.1(b)
 I/O Memory map (00FF10H-00FF14H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF15	D7	PRPRT3	Programmable timer 3 clock control	On	Off	0	R/W	
		PST32	Programmable timer 3 division ratio PST32 PST31 PST30 (OSC3) (OSC1)			0	R/W	
	D5	PST31	1 1 fosc3 / 4096 fosc1 / 128 1 1 0 fosc3 / 1024 fosc1 / 64 1 0 1 fosc3 / 256 fosc1 / 32 1 0 0 fosc3 / 64 fosc1 / 16 1 0 1 fosc3 / 64 fosc1 / 16			0	R/W	
		PST30	0 1 1 fosc3 / 32 fosc1 / 8 - 0 1 0 fosc3 / 8 fosc1 / 4 - 0 0 1 fosc3 / 2 fosc1 / 2 - 0 0 1 fosc3 / 2 fosc1 / 2 - 0 0 0 fosc3 / 1 fosc1 / 1			0	R/W	
	D3	PRPRT2	Programmable timer 2 clock control	On	Off	0	R/W	
	D2	PST22	$ \begin{array}{c c} Programmable timer 2 division ratio \\ \hline PST22 \\ \hline 1 \\ 1 \\$			0	R/W	
	D1	PST21	1 1 0 fosc3 / 1024 fosc1 / 64 1 0 1 fosc3 / 256 fosc1 / 32 1 0 0 fosc3 / 64 fosc1 / 16 0 1 1 fosc3 / 32 fosc1 / 8			0	R/W	
	D0	PST20	0 1 0 fosci / 2 fosci / 4 0 0 1 fosci / 2 fosci / 4 0 0 1 fosci / 2 fosci / 2 0 0 0 fosci / 1 fosci / 1			0	R/W	
00FF17	D7	-	-	-	_	_		Constantly "0" when
	D6	-	-	-	_	_		being read
	D5	-	_	-	_	_		
	D4	_	R/W register	1	0	0	R/W	Reserved register
	D3	PRTF3	Programmable timer 3 source clock selection	fosci	fosc3	0	R/W	
	D2	PRTF2	Programmable timer 2 source clock selection	fosci	fosc3	0	R/W	
	D1	PRTF1	Programmable timer 1 source clock selection	fosci	fosc3	0	R/W	
	D0	PRTF0	Programmable timer 0 source clock selection	fosci	fosc3	0	R/W	
00FF18	D7	PRPRT5	Programmable timer 5 clock control	On	Off	0	R/W	
	D6	PST52	Programmable timer 5 division ratio PST52 PST51 PST50 (OSC3) (OSC1) 1 1 1 fosc3 / 4096 fosc1 / 128			0	R/W	
	D5	PST51	1 1 0 fosc3 / 1024 fosc1 / 64 1 0 1 fosc3 / 256 fosc1 / 32 1 0 0 fosc3 / 64 fosc1 / 16 0 1 1 fosc3 / 32 fosc1 / 8			0	R/W	
	D4	PST50	0 1 0 fosc3 / 2 fosc1 / 8 0 1 0 fosc3 / 8 fosc1 / 4 0 0 1 fosc3 / 2 fosc1 / 2 0 0 0 fosc3 / 1 fosc1 / 1			0	R/W	
	D3	PRPRT4	Programmable timer 4 clock control	On	Off	0	R/W	
	D2	PST42	Programmable timer 4 division ratio PST42 PST41 PST40 (OSC3) (OSC1) 1 1 1 fosc3 / 4096 fosc1 / 128			0	R/W	
	D1	PST41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	PST40	0 1 1 10sc3/32 10sc1/8 - 0 1 0 fosc3/8 fosc1/4 - 0 0 1 fosc3/2 fosc1/2 - 0 0 1 fosc3/2 fosc1/2 - 0 0 1 fosc3/1 fosc1/1 -			0	R/W	

Table 5.1.1(c) I/O Memory map (00FF15H–00FF18H)

Address	Bit	Name	Table 5.1.1(d) 1/O Memory map (C	1	0	SR	R/W	Comment
00FF19		PRPRT7	Programmable timer 7 clock control	On	Off	0	R/W	Comment
001113		PST72	Programmable timer 7 division ratio PST72 PST71 PST70 (OSC3) (OSC1)	Oli	Oli	0	R/W	
	D5	PST71	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D4	PST70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D3	PRPRT6	Programmable timer 6 clock control	On	Off	0	R/W	
	D2	PST62	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0	R/W	
	D1	PST61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	PST60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
00FF1B	D7	-	-	-	-	-		Constantly "0" when
	D6	-	-	-	-	-		being read
	D5	-	-	-	-	-		
	D4	-	-	-	-	-		
		PRTF7	Programmable timer 7 source clock selection	fosc1	fosc3	0	R/W	
		PRTF6	Programmable timer 6 source clock selection	fosc1	fosc3	0	R/W	
		PRTF5	Programmable timer 5 source clock selection	fosci	fosc3	0	R/W	
		PRTF4	Programmable timer 4 source clock selection	fosci	fosc3	0	R/W	
00FF20		PK01 PK00	K00–K07 interrupt priority register	PK01 PK0 <u>PSIF1</u> <u>PSIF</u> 1 1	0 level Level 3	0	R/W	
		PSIF1 PSIF0	Serial interface interrupt priority register	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Level 2 Level 1 Level 0	0	R/W	
	D3	-		-	_	-		Constantly "0" when
	D2	-		-	-	-		being read
		PTM1 PTM0	Clock timer interrupt priority register	$ \begin{array}{c c} \underline{PTM1} & \underline{PTM} \\ \hline 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} $	10 Priority level Level 3 Level 2 Level 1	0	R/W	
				0 0	Level 0			
00FF21	D7	-	_	-	-	-		Constantly "0" when
	D6			– PPT3 PPT	 2 Priority	-	D 7**	being read
		PPT3	Programmable timer 3–2 interrupt	PPT1 PPT	0 level	0	R/W	
		PPT2	priority register	$ \begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} $	Level 3 Level 2		D/37	
		PPT1	Programmable timer 1–0 interrupt	0 1	Level 1	0	R/W	
		PPT0	priority register	0 0	Level 0			Ganatantia "O" 1
	D1	-	-	-	-	-		Constantly "0" when
00FF22	D0 D7	-		-	-	-		being read
JUFFZZ	D7 D6		—	-	-	-		Constantly "0" when being read
	D6 D5	_		-	-	-		being read
	D3 D4	_		-	-	_		
		– ETM32	Clock timer 32 Hz interrupt enable register					
		ETM8	Clock timer 8 Hz interrupt enable register	Interrupt	Interrupt			
		ETM2	Clock timer 2 Hz interrupt enable register	enable	disable	0	R/W	
		ETM1	Clock timer 1 Hz interrupt enable register	chuoie	andulle			
	20		crock amor i inz interrupt enable register		1		I	

Table 5.1.1(d) I/O Memory map (00FF19H–00FF22H)

Address	Bit	Name	Table 5.1.1(e) 1/O Memory map (0 Function	1	0	SR	R/W	Comment
00FF23	D7	-	_	_	_	_		Constantly "0" when
	D6	_	_	-	-	_		being read
	D5	_	-	_	_	_		
	D4	_	-	_	_	_		
	D3	-	-	_	-	_		
	D2	ESERR	Serial I/F (error) interrupt enable register	Ţ				
	D1	ESREC	Serial I/F (receiving) interrupt enable register	Interrupt	Interrupt	0	R/W	
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register	enable	disable			
00FF24	D7	EK07	K07 interrupt enable					
	D6	EK06	K06 interrupt enable	1				
	D5	EK05	K05 interrupt enable					
	D4	EK04	K04 interrupt enable	Interrupt	Interrupt	0	DAV	
	D3	EK03	K03 interrupt enable	enable	disable	0	R/W	
	D2	EK02	K02 interrupt enable					
	D1	EK01	K01 interrupt enable					
	D0	EK00	K00 interrupt enable					
00FF25	D7	ETC3	PTM3 compare match interrupt enable					
	D6	ETU3	PTM3 underflow interrupt enable					
	D5	ETC2	PTM2 compare match interrupt enable					
	D4	ETU2	PTM2 underflow interrupt enable	Interrupt	Interrupt	0	R/W	
	D3	ETC1	PTM1 compare match interrupt enable	enable	disable	0	K/ W	
	D2	ETU1	PTM1 underflow interrupt enable					
	D1	ETC0	PTM0 compare match interrupt enable					
	D0	ETU0	PTM0 underflow interrupt enable					
00FF26	D7	-	-	-	-	-		Constantly "0" when
	D6	-	-	-	-	-		being read
	D5	-	-	-	-	-		
	D4	-	-	-	-	-		
		FTM32	Clock timer 32 Hz interrupt factor flag	(R)	(R)			
		FTM8	Clock timer 8 Hz interrupt factor flag	Generated	Not generated	0	R/W	
		FTM2	Clock timer 2 Hz interrupt factor flag	(W)	(W)	0	10	
	D0	FTM1	Clock timer 1 Hz interrupt factor flag	Reset	No operation			
00FF27	D7	-	-	-	-	-		Constantly "0" when
	D6	-	-	-	-	-		being read
	D5	-	-	-	-	-		
	D4	-	-	-	-	-		
	D3	-	_	- (P)	- (P)	-		
		FSERR	Serial I/F (error) interrupt factor flag	(R) Generated	(R) Not generated			
		FSREC	Serial I/F (receiving) interrupt factor flag	(W)	(W)	0	R/W	
		FSTRA	Serial I/F (transmitting) interrupt factor flag	Reset	No operation			
00FF28		FK07	K07 interrupt factor flag	(R)	(R)			
		FK06	K06 interrupt factor flag	Interrupt	No interrupt			
		FK05	K05 interrupt factor flag	factor is	factor is			
		FK04	K04 interrupt factor flag	generated	generated	0	R/W	
		FK03	K03 interrupt factor flag	_				
		FK02	K02 interrupt factor flag	(W)	(W)			
		FK01 FK00	K01 interrupt factor flag K00 interrupt factor flag	Reset	No operation			
ι I					1			

Table 5.1.1(e) I/O Memory map (00FF23H–00FF28H)

Address	Bit	Name	Table 5.1.1(f) 1/O Memory map (0 Function	1	0	SR	R/W	Comment
00FF29	D7	FTC3	PTM3 compare match interrupt factor flag	(R)	(R)			
Ī	D6	FTU3	PTM3 underflow interrupt factor flag	Interrupt	No interrupt			
ŀ	D5	FTC2	PTM2 compare match interrupt factor flag	factor is	factor is			
F		FTU2	PTM2 underflow interrupt factor flag	generated	generated			
F		FTC1	PTM1 compare match interrupt factor flag			0	R/W	
F		FTU1	PTM1 underflow interrupt factor flag	(W)	(W)			
		FTC0	PTM0 compare match interrupt factor flag	Reset	No operation			
F		FTU0	PTM0 underflow interrupt factor flag		- · · · · · · · · · · · · · · · · · · ·			
	D7	-	-	_	_	_		Constantly "0" when
-	D6	_	_	_	_	_		being read
H	D5	_	_	_	_	_		
H	D4	_	_	_	_	_		
F		PPT7	Programmable timer 7–6 interrupt	PPT7 PPT	~	0	R/W	
F		PPT6	priority register	$\frac{PPT5}{1}$ $\frac{PPT}{1}$	4 level Level 3	÷		
H		PPT5	Programmable timer 5–4 interrupt	1 0	Level 2	0	R/W	
F		PPT4	priority register	$ \begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array} $	Level 1 Level 0	÷		
		ETC7	PTM7 compare match interrupt enable	0 0	Levero			
H		ETU7	PTM7 underflow interrupt enable					
F		ETC6	PTM6 compare match interrupt enable					
H		ETU6	PTM6 underflow interrupt enable	Interrupt	Interrupt			
-		ETC5	PTM5 compare match interrupt enable	enable	disable	0	R/W	
F		ETU5	PTM5 underflow interrupt enable		distore			
- F		ETC4	PTM4 compare match interrupt enable					
F		ETU4	PTM4 underflow interrupt enable					
		FTC7	PTM7 compare match interrupt factor flag	(R)	(R)			
F		FTU7	PTM7 underflow interrupt factor flag	Interrupt	No interrupt			
F		FTC6	PTM6 compare match interrupt factor flag	factor is	factor is			
F		FTU6	PTM6 underflow interrupt factor flag	generated	generated			
F		FTC5	PTM5 compare match interrupt factor flag	generated	generated	0	R/W	
F		FTU5	PTM5 underflow interrupt factor flag	(W)	(W)			
F		FTC4	PTM4 compare match interrupt factor flag	Reset	No operation			
F		FTU4	PTM4 underflow interrupt factor flag	reser	rio operation			
		MODE16 A	PTM0–1 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
-			External clock 0 noise rejecter selection	Enable	Disable	0	R/W	
-	D5	_	_	_	_	_		"0" when being read
H	D4	_	R/W register	1	0	0	R/W	Reserved register
-		ΡΤΟυΤΟ	PTM0 clock output control	On	Off	0	R/W	
H			PTM0 Run/Stop control	Run	Stop	0	R/W	
-			PTM0 preset	Preset	No operation	0	W	"0" when being read
			PTM0 input clock selection		Internal clock	0	R/W	
	D7	_		_	_	_		Constantly "0" when
H	D6	_	_	_	_	_		being read
H	D5	_	_	_	_	_		
H	D4	_	R/W register	1	0	0	R/W	Reserved register
H		PTOUT1	PTM1 clock output control	On	Off	0	R/W	
-			PTM1 Run/Stop control	Run	Stop	0	R/W	1
		PSET1	PTM1 preset	Preset	No operation	0	-	
	D1	PSEI1 1	PINI preset				W	"0" when being read

Table 5.1.1(f) I/O Memory map (00FF29H–00FF31H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF32	D7	RDR07	PTM0 reload data D7 (MSB)					
	D6	RDR06	PTM0 reload data D6					
	D5	RDR05	PTM0 reload data D5					
	D4	RDR04	PTM0 reload data D4				DAV	
	D3	RDR03	PTM0 reload data D3	High	Low	1	R/W	
	D2	RDR02	PTM0 reload data D2					
	D1	RDR01	PTM0 reload data D1					
	D0	RDR00	PTM0 reload data D0 (LSB)					
00FF33	D7	RDR17	PTM1 reload data D7 (MSB)					
	D6	RDR16	PTM1 reload data D6					
	D5	RDR15	PTM1 reload data D5					
	D4	RDR14	PTM1 reload data D4	load data D4			-	
	D3	RDR13	PTM1 reload data D3	High	Low	1	R/W	
	D2	RDR12	PTM1 reload data D2					
	D1	RDR11	PTM1 reload data D1					
	D0	RDR10	PTM1 reload data D0 (LSB)					
00FF34		CDR07	PTM0 compare data D7 (MSB)					
		CDR06	PTM0 compare data D6					
		CDR05	PTM0 compare data D5					
		CDR04	PTM0 compare data D4					
		CDR03	PTM0 compare data D3	High	Low	0	R/W	
		CDR02	PTM0 compare data D2					
		CDR01	PTM0 compare data D1					
		CDR00	PTM0 compare data D0 (LSB)					
00FF35		CDR17	PTM1 compare data D7 (MSB)					
		CDR16	PTM1 compare data D6					
		CDR15	PTM1 compare data D5					
		CDR14	PTM1 compare data D4					
		CDR13	PTM1 compare data D3	High	Low	0	R/W	
		CDR12	PTM1 compare data D2					
		CDR11	PTM1 compare data D1					
		CDR10	PTM1 compare data D0 (LSB)					
00FF36		PTM07	PTM0 data D7 (MSB)					
0011 00		PTM06	PTM0 data D6					
		PTM05	PTM0 data D5					
		PTM04	PTM0 data D4					
		PTM03	PTM0 data D3	High	Low	1	R	
		PTM02	PTM0 data D2					
		PTM01	PTM0 data D1					
		PTM00	PTM0 data D0 (LSB)					
00FF37		PTM17	PTM0 data D0 (LSB) PTM1 data D7 (MSB)					
501 - 57		PTM17	PTM1 data D7 (MSB)					
		PTM15	PTM1 data D6					
		PTM14	PTM1 data D4	High	Low	1	R	
		PTM13	PTM1 data D3					
		PTM12	PTM1 data D2			1		
		PTM11	PTM1 data D1					
	טט	PTM10	PTM1 data D0 (LSB)					

Table 5.1.1(g) I/O Memory map (00FF32H–00FF37H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF38	D7	MODE16_B	PTM2–3 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_B	External clock 1 noise rejecter selection	Enable	Disable	0	R/W	
	D5	-	-	-	-	_		"0" when being read
	D4	RPTOUT2	PTM2 inverted clock output control	On	Off	0	R/W	
	D3	PTOUT2	PTM2 clock output control	On	Off	0	R/W	
	D2	PTRUN2	PTM2 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET2	PTM2 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL2	PTM2 input clock selection	External clock	Internal clock	0	R/W	
00FF39	D7	-	_	-	-	_		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	-	_	-	-	_		
	D4	RPTOUT3	PTM3 inverted clock output control	On	Off	0	R/W	
	D3	PTOUT3	PTM3 clock output control	On	Off	0	R/W	
	D2	PTRUN3	PTM3 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET3	PTM3 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL3	PTM3 input clock selection	External clock	Internal clock	0	R/W	
00FF3A	D7	RDR27	PTM2 reload data D7 (MSB)					
	D6	RDR26	PTM2 reload data D6					
	D5	RDR25	PTM2 reload data D5					
	D4	RDR24	PTM2 reload data D4	High	Low	1	R/W	
	D3	RDR23	PTM2 reload data D3		LOW	1		
	D2	RDR22	PTM2 reload data D2					
	D1	RDR21	PTM2 reload data D1					
		RDR20	PTM2 reload data D0 (LSB)					
00FF3B		RDR37	PTM3 reload data D7 (MSB)					
		RDR36	PTM3 reload data D6					
		RDR35	PTM3 reload data D5					
		RDR34	PTM3 reload data D4	High	Low	1	R/W	
		RDR33	PTM3 reload data D3	0				
		RDR32	PTM3 reload data D2					
		RDR31	PTM3 reload data D1					
		RDR30	PTM3 reload data D0 (LSB)					
00FF3C		CDR27	PTM2 compare data D7 (MSB)					
		CDR26	PTM2 compare data D6					
		CDR25	PTM2 compare data D5					
		CDR24 CDR23	PTM2 compare data D4	High	Low	0	R/W	
		CDR23 CDR22	PTM2 compare data D3					
		CDR22	PTM2 compare data D2					
		CDR20	PTM2 compare data D1 PTM2 compare data D0 (LSB)					
00FF3D	D7	CDR37	· · · · · · · · · · · · · · · · · · ·					
501150		CDR37	PTM3 compare data D7 (MSB) PTM3 compare data D6					
		CDR35	PTM3 compare data D6 PTM3 compare data D5					
		CDR35	PTM3 compare data D3 PTM3 compare data D4					
		CDR34	PTM3 compare data D4 PTM3 compare data D3	High	Low	0	R/W	
		CDR32	PTM3 compare data D3 PTM3 compare data D2					
		CDR32	PTM3 compare data D2 PTM3 compare data D1					
		CDR30	PTM3 compare data D1 PTM3 compare data D0 (LSB)					
	00	55100	r mis compare data Do (LSD)	1	1			

Table 5.1.1(h) I/O Memory map (00FF38H–00FF3DH)

Address	Bit	Name	Table 5.1.1(i) I/O Memory map (0) Function	1	0	SR	R/W	Comment
00FF3E	D7	PTM27	PTM2 data D7 (MSB)					
	D6	PTM26	PTM2 data D6					
	D5	PTM25	PTM2 data D5					
	D4	PTM24	PTM2 data D4					
	D3	PTM23	PTM2 data D3	High	Low	1	R	
	D2	PTM22	PTM2 data D2					
	D1	PTM21	PTM2 data D1					
	D0	PTM20	PTM2 data D0 (LSB)					
00FF3F	D7	PTM37	PTM3 data D7 (MSB)					
	D6	PTM36	PTM3 data D6					
	D5	PTM35	PTM3 data D5					
	D4	PTM34	PTM3 data D4	XX: 1	Ţ	1	р	
	D3	PTM33	PTM3 data D3	High	Low	1	R	
	D2	PTM32	PTM3 data D2					
	D1	PTM31	PTM3 data D1					
	D0	PTM30	PTM3 data D0 (LSB)					
00FF40	D7	WDEN	Watchdog timer enable	Enable	Disable	1	R/W	
	D6	FOUT2	FOUT frequency selection			0	R/W	
			FOUT2 FOUT1 FOUT0 Frequency					
			1 1 1 fosc3 / 8				L	
	D5	FOUT1	1 1 0 fosc3/4			0	R/W	
			1 0 1 fosc3 / 2 1 0 0 fosc3 / 1					
			0 1 1 fosci / 8				L	
	D4	FOUT0	0 1 0 fosci / 4			0	R/W	
			0 0 1 fosci / 2					
			0 0 0 fosci / 1					
	D3	FOUTON	FOUT output control	On	Off	0	R/W	
	D2	WDRST	Watchdog timer reset	Reset	No operation	-	W	Constantly "0" when
	D1	TMRST	Clock timer reset	Reset	No operation	-	W	being read
	D0	TMRUN	Clock timer Run/Stop control	Run	Stop	0	R/W	
00FF41	D7	TMD7	Clock timer data 1 Hz					
	D6	TMD6	Clock timer data 2 Hz					
	D5	TMD5	Clock timer data 4 Hz					
	D4	TMD4	Clock timer data 8 Hz	Uich	Low	0	R	
	D3	TMD3	Clock timer data 16 Hz	High	LOW	U	ĸ	
	D2	TMD2	Clock timer data 32 Hz					
	D1	TMD1	Clock timer data 64 Hz					
	D0	TMD0	Clock timer data 128 Hz					

 Table 5.1.1(i)
 I/O Memory map (00FF3EH-00FF41H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF48	D7	_	_	-	-	_		"0" when being read
	D6	EPR	Parity enable register	With parity	Non parity	0	R/W	Only for
	D5	PMD	Parity mode selection	Odd	Even	0	R/W	asynchronous mode
	D4	SCS1	Clock source selection			0	R/W	In the clock synchro-
			SCS1 SCS0 Clock source					nous slave mode,
			1 1 Programmable timer					external clock is
	D3	SCS0	1 0 fosc3 / 4			0	R/W	selected.
			0 1 fosc3 / 8					
			0 0 fosc3 / 16					
	D2	SMD1	Serial I/F mode selection			0	R/W	
			SMD1 SMD0 Mode					
			1 1 Asynchronous 8-bit					
	D1	SMD0	1 0 Asynchronous 7-bit			0	R/W	
			0 1 Clock synchronous slave			-		
			0 0 Clock synchronous master					
	D0	ESIF	Serial I/F enable register	Serial I/F	I/O port	0	R/W	
00FF49	D7	_	_	_		_	10.11	"0" when being read
		FER	Serial I/F framing error flag	Error	No error	0	R/W	Only for
			W	Reset (0)	No operation	Ū		asynchronous mode
	D5	PER	Serial I/F parity error flag	Error	No error	0	R/W	asynemonous mode
			W	Reset (0)	No operation	0		
	D4	OER	Serial I/F overrun error flag R	Error	No error	0	R/W	-
			W	Reset (0)		0		
	2	RXTRG	Serial I/F receive trigger/status R	Run	No operation	0	R/W	
	05	NATINO	W	Trigger	Stop No operation	0		
	D2	RXEN	Serial I/F receive enable	Enable	Disable	0	R/W	-
	D1		Serial I/F transmit trigger/status	Run	Stop	0	R/W	
		_	W	Trigger	No operation			
	D0	TXEN	Serial I/F transmit enable	Enable	Disable	0	R/W	-
00FF4A	D7	TRXD7	Serial I/F transmit/Receive data D7 (MSB)					
	D6	TRXD6	Serial I/F transmit/Receive data D6					
	D5	TRXD5	Serial I/F transmit/Receive data D5					
	D4	TRXD4	Serial I/F transmit/Receive data D4				-	
	D3	TRXD3	Serial I/F transmit/Receive data D3	High	Low	Х	R/W	
		TRXD2	Serial I/F transmit/Receive data D2					
		TRXD1	Serial I/F transmit/Receive data D1					
		TRXD0	Serial I/F transmit/Receive data D0 (LSB)					
00FF4B		_	_	_	_	_		Constantly "0" when
	D6	_	_	_	_	_		being read
	D5		_	_	_	_		
	D3		_	_	_			1
	D4		_	_	_			1
	D3							1
		- STPB	Serial I/F stop bit selection	- 2 hite	- 1 bit	- 0	R/W	
		SDP	Serial I/F stop bit selection Serial I/F data input/output permutation selection	2 bits	1 bit		R/W R/W	{
	טט	307	Serial I/F data input/output permutation selection	MSB first	LSB first	0	K/ W	

Table 5.1.1(j) I/O Memory map (00FF48H–00FF4BH)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF52	D7	KCP07	K07 input comparison register					
-	D6	KCP06	K06 input comparison register					
	D5	KCP05	K05 input comparison register	Interrupt	Interrupt			
	D4	KCP04	K04 input comparison register	generated	generated	1	DAV	
	D3	KCP03	K03 input comparison register	at falling	at rising	1	R/W	
	D2	KCP02	K02 input comparison register	edge	edge			
	D1	KCP01	K01 input comparison register					
	D0	KCP00	K00 input comparison register					
00FF54	D7	K07D	K07 input port data					
-	D6	K06D	K06 input port data					
		K05D	K05 input port data					
		K04D	K04 input port data	High level	Low level			
		K03D	K03 input port data	input	input	-	R	
		K02D	K02 input port data					
		K01D	K01 input port data					
		K00D	K00 input port data					
00FF56			K07 pull-up control register					
001100			K06 pull-up control register					
			K05 pull-up control register					
			K04 pull-up control register					
			K03 pull-up control register	On	Off	1	R/W	
			K02 pull-up control register					
			K01 pull-up control register					
			K00 pull-up control register					
00FF58	D0		Koo pull-up control register					"0" when being rea
001150		- CTK02H	- K04–K07 port chattering-eliminate setup	_	_	- 0	R/W	0 when being rea
	00	CIROZII	(Input level check time) Check time				K/ W	
			CTK02H CTK01H CTK00H [sec]					
	D5	CTK01H	1 1 1 4/fosc3 1 1 0 2/fosc3			0	R/W	
			1 1 0 2/108C3 1 0 1 1/fosc3					
			1 0 0 4096/fosc1					
	D4	СТК00Н	0 1 1 2048/fosc1 0 1 0 512/fosc1			0	R/W	
			0 0 1 128/fosci					
	D 2		0 0 0 None					
	D3			-	-	-	D/W	"0" when being rea
	DZ	CTK02L	K00–K03 port chattering-eliminate setup (Input level check time) Check time			0	R/W	
			CTK02L CTK01L CTK00L [sec]					
	D1	CTK01L	1 1 1 1 $4/fosc3$			0	R/W	
			1 1 0 2/fosc3 1 0 1 1/fosc3					
			1 0 0 4096/fosci			L	L	
	D0	CTK00L	0 1 1 2048/fosc1 0 1 0 512/fosc1			0	R/W	
			0 0 1 128/fosc1					
005500	D 7	10007	0 0 0 None					
00FF60		IOC07	P07 I/O control register					
		IOC06	P06 I/O control register					
		IOC05	P05 I/O control register					
		IOC04	P04 I/O control register	Output	Input	0	R/W	
		IOC03	P03 I/O control register	Put				
		IOC02	P02 I/O control register					
		IOC01	P01 I/O control register					
	D0	IOC00	P00 I/O control register					

Table 5.1.1(k) I/O Memory map (00FF52H–00FF60H)

Address	Bit	Name	Table 5.1.1(1) I/O Memory map (0 Function	1	0	SR	R/W	Comment
00FF61	D7	IOC17	P17 I/O control register					
	D6	IOC16	OC16 P16 I/O control register					
	D5 IOC15		P15 I/O control register					
	D4	IOC14	P14 I/O control register				_	
	D3	IOC13	P13 I/O control register	Output	Input	0	R/W	
	D2	IOC12	P12 I/O control register					
	D1	IOC11	P11 I/O control register					
	D0	IOC10	P10 I/O control register					
00FF62	D7	P07D	P07 I/O port data					
	D6	P06D	P06 I/O port data					
	D5	P05D	P05 I/O port data					
	D4	P04D	P04 I/O port data					
	D3	P03D	P03 I/O port data	High	Low	1	R/W	
		P02D	P02 I/O port data					
		P01D	P01 I/O port data					
		P00D	P00 I/O port data					
00FF63		P17D	P17 I/O port data					
		P16D	P16 I/O port data					
		P15D	P15 I/O port data					
		P14D	P14 I/O port data					
		P13D	P13 I/O port data	High	Low	1	R/W	
		P12D	P12 I/O port data					
		P11D	P11 I/O port data					
		P10D	P10 I/O port data					
00FF64			P07 pull-up control register					
			P06 pull-up control register					
			P05 pull-up control register					
			P04 pull-up control register					
			P03 pull-up control register	On	Off	1	R/W	
			P02 pull-up control register					
			P01 pull-up control register					
			P00 pull-up control register					
00FF65			P17 pull-up control register					
			P16 pull-up control register					
			P15 pull-up control register					
			P14 pull-up control register					
			P13 pull-up control register	On	Off	1	R/W	
			P12 pull-up control register					
			P11 pull-up control register					
			P10 pull-up control register					
00FF70	D7	-	R/W register	1	0	0	R/W	Reserved register
	D6	_	R/W register	1	0	0	R/W	, č
	D5	_	R/W register	1	0	0	R/W	
	D4	_	R/W register	1	0	0	R/W	
		HZR1H	R14–R17 high impedance control					
		HZR1L	R10–R13 high impedance control	High	Comple-			
			R04–R07 high impedance control	impedance	mentary	0	R/W	
		D1 HZROH R04–R07 high impedance control D0 HZROL R00–R03 high impedance control						
	20		Koo man impedance control				1	

Table 5.1.1(l) I/O Memory map (00FF61H–00FF70H)

Address	Bit	Name	Table 5.1.1(m) 1/O Memory map (0 Function	1	0	SR	R/W	Comment
00FF71	D7	-	R/W register	1	0	0	R/W	Reserved register
	D6	_	R/W register	1	0	0	R/W	-
	D5	HZR25	R25 high impedance control					
	D4	HZR24	R24 high impedance control					
	D3	HZR23	R23 high impedance control	High	Comple-			
	D2	HZR22	R22 high impedance control	impedance	mentary	0	R/W	
	D1	HZR21	R21 high impedance control					
	D0	HZR20	R20 high impedance control					
00FF72	D7	_	R/W register	1	0	0	R/W	Reserved register
	D6	_	R/W register	1	0	0	R/W	-
	D5	_	R/W register	1	0	0	R/W	
	D4	_	R/W register	1	0	0	R/W	
	D3	HZR33	R33 high impedance control					
	D2	HZR32	R32 high impedance control	High	Comple-			
	D1	HZR31	R31 high impedance control	impedance	mentary	0	R/W	
	D0	HZR30	R30 high impedance control	1				
00FF73	D7	R07D	R07 output port data					
		R06D	R06 output port data					
	D5	R05D	R05 output port data		Low	1		
		R04D	R04 output port data					
		R03D	R03 output port data	High			R/W	
		R02D	R02 output port data					
		R01D	R01 output port data					
		R00D	R00 output port data					
00FF74		R17D	R17 output port data					
		R16D	R16 output port data					
		R15D	R15 output port data					
		R14D	R14 output port data					
		R13D	R13 output port data	High	Low	1	R/W	
		R12D	R12 output port data					
		R11D	R11 output port data					
		R10D	R10 output port data					
00FF75	D7	_	R/W register	1	0	0	R/W	Reserved register
	D6	_	R/W register	1	0	0	R/W	
		R25D	R25 output port data			-		
		R24D	R24 output port data					
		R23D	R23 output port data					
		R22D	R22 output port data	High	Low	1	R/W	
		R21D	R21 output port data					
		R20D	R20 output port data					
00FF76	D7	_	R/W register	1	0	0	R/W	Reserved register
	D6	_	R/W register	1	0	0	R/W	
	D5	_	R/W register	1	0	0	R/W	
	D4	_	R/W register	1	0	0	R/W	
		R33D	R33 output port data	1				
		R32D	R32 output port data					
		R31D	R31 output port data	High	Low	1	R/W	
		R30D	R30 output port data					

Table 5.1.1(m) I/O Memory map (00FF71H–00FF76H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FFB0	D7	MODE16_C	PTM4–5 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_C	External clock 2 noise rejecter selection	Enable	Disable	0	R/W	
	D5	-	_	-	-	-		"0" when being read
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	-	R/W register	1	0	0	R/W	
	D2	PTRUN4	PTM4 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET4	PTM4 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL4	PTM4 input clock selection	External clock	Internal clock	0	R/W	
00FFB1	D7	-	_	-	-	_		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	-	_	-	-	-		
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	-	R/W register	1	0	0	R/W	
	D2	PTRUN5	PTM5 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET5	PTM5 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL5	PTM5 input clock selection	External clock	Internal clock	0	R/W	
00FFB2	D7	RDR47	PTM4 reload data D7 (MSB)					
	D6	RDR46	PTM4 reload data D6					
	D5	RDR45	PTM4 reload data D5					
	D4	RDR44	PTM4 reload data D4		_			
	D3	RDR43	PTM4 reload data D3	High	Low	Low 1	1 R/W	
	D2	RDR42	PTM4 reload data D2	-				
	D1	RDR41	PTM4 reload data D1					
	D0	RDR40	PTM4 reload data D0 (LSB)					
00FFB3	D7	RDR57	PTM5 reload data D7 (MSB)					
	D6	RDR56	PTM5 reload data D6					
	D5	RDR55	PTM5 reload data D5					
	D4	RDR54	PTM5 reload data D4			1 R/W		
	D3	RDR53	PTM5 reload data D3	High	Low		R/W	
	D2	RDR52	PTM5 reload data D2					
	D1	RDR51	PTM5 reload data D1					
	D0	RDR50	PTM5 reload data D0 (LSB)					
00FFB4	D7	CDR47	PTM4 compare data D7 (MSB)					
	D6	CDR46	PTM4 compare data D6					
	D5	CDR45	PTM4 compare data D5					
	D4	CDR44	PTM4 compare data D4					
	D3	CDR43	PTM4 compare data D3	High	Low	0	R/W	
		CDR42	PTM4 compare data D2					
		CDR41	PTM4 compare data D1					
		CDR40	PTM4 compare data D0 (LSB)					
00FFB5		CDR57	PTM5 compare data D7 (MSB)					
-		CDR56	PTM5 compare data D6					
		CDR55	PTM5 compare data D5					
		CDR54	PTM5 compare data D4					
		CDR53	PTM5 compare data D3	High Low		0	R/W	
		CDR52	PTM5 compare data D2					
		CDR51	PTM5 compare data D1					
		CDR50	PTM5 compare data D0 (LSB)					
	50	00100	r me compare data D0 (LDD)	1			L	

Table 5.1.1(n) I/O Memory map (00FFB0H–00FFB5H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FFB6	D7	PTM47	PTM4 data D7 (MSB)					
	D6	PTM46	PTM4 data D6					
	D5	PTM45	PTM4 data D5		Low			
	D4	PTM44	PTM4 data D4	*** 1		1	R	
	D3	PTM43	PTM4 data D3	High		1	ĸ	
	D2	PTM42	PTM4 data D2					
	D1	PTM41	PTM4 data D1					
	D0	PTM40	PTM4 data D0 (LSB)					
00FFB7	D7	PTM57	PTM5 data D7 (MSB)					
	D6	PTM56	PTM5 data D6					
	D5	PTM55	PTM5 data D5					
	D4	PTM54	PTM5 data D4	TT: 1	T	1	D	
	D3	PTM53	PTM5 data D3	High	Low	1	R	
	D2	PTM52	PTM5 data D2					
	D1	PTM51	PTM5 data D1					
	D0	PTM50	PTM5 data D0 (LSB)					
00FFB8	D7	MODE16_D	PTM6–7 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_D	External clock 3 noise rejecter selection	Enable	Disable	0	R/W	
	D5	-	-	-	-	_		"0" when being read
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	-	R/W register	1	0	0	R/W	
	D2	PTRUN6	PTM6 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET6	PTM6 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL6	PTM6 input clock selection	External clock	Internal clock	0	R/W	
00FFB9	D7	_	-	-	-	_		Constantly "0" when
	D6	-	-	-	-	_		being read
	D5	-	-	-	-	_		
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	-	R/W register	1	0	0	R/W	
	D2	PTRUN7	PTM7 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET7	PTM7 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL7	PTM7 input clock selection	External clock	Internal clock	0	R/W	
00FFBA		RDR67	PTM6 reload data D7 (MSB)					
	D6	RDR66	PTM6 reload data D6					
	D5	RDR65	PTM6 reload data D5					
	D4	RDR64	PTM6 reload data D4				DAV	
	D3	RDR63	PTM6 reload data D3	High	Low	1	R/W	
	D2	RDR62	PTM6 reload data D2					
	D1	RDR61	PTM6 reload data D1					
	D0	RDR60	PTM6 reload data D0 (LSB)					
00FFBB	D7	RDR77	PTM7 reload data D7 (MSB)					
	D6	RDR76	PTM7 reload data D6					
		RDR75	PTM7 reload data D5					
		RDR74	PTM7 reload data D4			,		
		RDR73	PTM7 reload data D3	High	Low	1	R/W	
-		RDR72	PTM7 reload data D2					
	DZ I							
		RDR71	PTM7 reload data D1					

 Table 5.1.1(o)
 I/O Memory map (00FFB6H–00FFBBH)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FFBC	D7	CDR67	PTM6 compare data D7 (MSB)					
	D6	CDR66	PTM6 compare data D6	-				
	D5	CDR65	PTM6 compare data D5					
	D4	CDR64	PTM6 compare data D4	TT: 1	,		DAV	
	D3	CDR63	PTM6 compare data D3	High	Low	0	R/W	
	D2	CDR62	PTM6 compare data D2					
	D1	CDR61	PTM6 compare data D1					
	D0	CDR60	PTM6 compare data D0 (LSB)					
00FFBD	D7	CDR77	PTM7 compare data D7 (MSB)					
	D6	CDR76	PTM7 compare data D6					
	D5	CDR75	PTM7 compare data D5		Low	0	R/W	
	D4	CDR74	PTM7 compare data D4	II:-1				
	D3	CDR73	PTM7 compare data D3	High				
	D2	CDR72	PTM7 compare data D2					
	D1	CDR71	PTM7 compare data D1					
	D0	CDR70	PTM7 compare data D0 (LSB)					
00FFBE	D7	PTM67	PTM6 data D7 (MSB)					
	D6	PTM66	PTM6 data D6			1		
	D5	PTM65	PTM6 data D5					
	D4	PTM64	PTM6 data D4	High	Low		R	
	D3	PTM63	PTM6 data D3	підп	Low		ĸ	
	D2	PTM62	PTM6 data D2					
		PTM61	PTM6 data D1					
	D0	PTM60	PTM6 data D0 (LSB)					
00FFBF		PTM77	PTM7 data D7 (MSB)					
	D6	PTM76	PTM7 data D6					
	D5	PTM75	PTM7 data D5					
	D4	PTM74	PTM7 data D4	High	Low	1	R	
	D3	PTM73	PTM7 data D3	mgn	LOW			
	D2	PTM72	PTM7 data D2					
	D1	PTM71	PTM7 data D1					
	D0	PTM70	PTM7 data D0 (LSB)					

Table 5.1.1(p) I/O Memory map (00FFBCH–00FFBFH)

5.2 System Controller and Bus Control

The system controller is a management unit which sets such items as the bus mode in accordance with memory system configuration factors. For the purposes of controlling the system, the following settings can be performed in software:

- (1) Bus and CPU mode settings
- (2) Chip enable (\overline{CE}) signal output settings
- (3) WAIT state settings for external memory
- (4) Page address setting of the stack pointer

Below is a description of the how these settings are to be made.

5.2.1 Bus mode and CPU mode settings

The S1C88650 has two bus modes and two CPU modes and the software must select appropriate modes according to the external memory size connected to the S1C88650.

As shown in Table 5.2.1.1, these modes are specified usng the registers BUSMOD and CPUMOD.

MCU/MPU	Setting value		Bus mode	CPU mode	Configuration of outernal memory				
terminal	BUSMOD	CPUMOD	Dus mode	CPU mode	Configuration of external memory				
1 (MCU mode)	1	1	Expansion	Maximum	ROM+RAM>64K bytes (Program≥64K bytes)				
	1	0		Minimum	ROM+RAM>64K bytes (Program<64K bytes)				
	0	1	Single chip	Maximum	None (Program≥64K bytes)				
	0	0		Minimum	None (Program<64K bytes)				
0 (MPU mode)	1	1	Expansion	Maximum	ROM+RAM>64K bytes (Program≥64K bytes)				
	1	0		Minimum	ROM+RAM>64K bytes (Program<64K bytes)				
	0 1			Maximum	ROM+RAM>64K bytes (Program≥64K bytes)				
	0	0		Minimum	ROM+RAM>64K bytes (Program<64K bytes)				

Table 5.2.1.1 Bus and CPU mode settings

Table 5.2.1.2	I/O terminal settings
---------------	-----------------------

- · ·	Bus m	node				
Terminal	Single chip	Expansion				
R00	Output port R00	Address bus A0				
R01	Output port R01	Address bus A1				
R02	Output port R02	Address bus A2				
R03	Output port R03	Address bus A3				
R04	Output port R04	Address bus A4				
R05	Output port R05	Address bus A5				
R06	Output port R06	Address bus A6				
R07	Output port R07	Address bus A7				
R10	Output port R10	Address bus A8				
R11	Output port R11	Address bus A9				
R12	Output port R12	Address bus A10				
R13	Output port R13	Address bus A11				
R14	Output port R14	Address bus A12				
R15	Output port R15	Address bus A13				
R16	Output port R16	Address bus A14				
R17	Output port R17	Address bus A15				
R20	Output port R20	Address bus A16				
R21	Output port R21	Address bus A17				
R22	Output port R22	Address bus A18				
R23	Output port R23	Address bus A19				
R24	Output port R24	RD signal				
R25	Output port R25	WR signal				
P00	I/O port P00	Data bus D0				
P01	I/O port P01	Data bus D1				
P02	I/O port P02	Data bus D2				
P03	I/O port P03	Data bus D3				
P04	I/O port P04	Data bus D4				
P05	I/O port P05	Data bus D5				
P06	I/O port P06	Data bus D6				
P07	I/O port P07	Data bus D7				

The function of I/O terminals is set as shown in Table 5.2.1.2 in accordance with mode selection. At initial reset, the bus mode (CPU mode) is set as explained below.

• In MCU mode:

At initial reset, the S1C88650 is set in single chip mode (minimum).

Accordingly, in MCU mode, even if a memory has been externally expanded, the system is activated by the program written to internal ROM.

In the system with externally expanded memory, perform the applicable bus mode settings during the initialization routine originating in internal ROM.

• In MPU mode:

At initial reset, the S1C88650 is set in expansion mode (minimum).

Therefore, the internal ROM will be disabled.

5.2.2 Address decoder (\overline{CE} output) settings

As explained in Section 3.6.4, the S1C88650 is equipped with address decoders that can output a maximum of three chip enable signals ($\overline{CE0}$ – $\overline{CE2}$) to external devices.

	Address range (e	expansion mode)
CE signal	MCU mode	MPU mode
CE0	300000H-3FFFFFH	000000H-00D7FFH, 010000H-0FFFFFH
CE1	100000H-1FFFFH	100000H-1FFFFH
CE2	200000H-2FFFFFH	200000H-2FFFFFH

Table 5.2.2.1 Address settings of $\overline{CE0}$ - $\overline{CE2}$

The output terminals and output circuits for $\overline{\text{CE0}}$ - $\overline{\text{CE2}}$ are shared with output ports R30–R32. At initial reset, they are set as output port terminals. For this reason, when operating in expansion mode, the ports to be used as $\overline{\text{CE}}$ signal output terminals must be set as such.

This setting is performed through software which writes "1" to registers CE0–CE2 corresponding the $\overline{\text{CE}}$ signals to be used.

Table 5.2.2.1 shows the address range assigned to the three chip enable (\overline{CE}) signals.

The arrangement of memory space for external devices does not necessarily have to be continuous from a subordinate address and any of the chip enable signals can be used to assign areas in memory. However, in the MPU mode, program memory must be assigned to $\overline{\text{CE0}}$.

The $\overline{\text{CE}}$ signals are only output when the appointed external memory area is accessed and are not output when internal memory is accessed.

5.2.3 WAIT state settings

In order to insure accessing of external low speed devices during high speed operations, the S1C88650 is equipped with a WAIT function which prolongs access time.

The number of wait states inserted can be selected from a choice of eight as shown in Table 5.2.3.1 by means of registers WT0–WT2.

Tuble 5.2.5.1 Setting the number of whith states										
WT2	WT1	WT0	Number of inserted states							
1	1	1	14							
1	1	0	12							
1	0	1	10							
1	0	0	8							
0	1	1	6							
0	1	0	4							
0	0	1	2							
0	0	0	No wait							

* The length of one state is a 1/2 clock cycle.

WAIT states set in software are inserted between bus cycle states T3–T4.

Note, however, that WAIT states cannot be inserted when an internal register and internal memory are being accessed and when operating with the OSC1 oscillation circuit (see "5.4 Oscillation Circuits"). Consequently, WAIT state settings in single chip mode are meaningless.

With regard to WAIT insertion timing, see Section 3.6.5, "WAIT control".

5.2.4 Setting the bus authority release request signal

With systems performing DMA transfer, the bus authority release request signal (BREQ) input terminal and acknowledge signal (BACK) output terminal have to be set.

The $\overline{\text{BREQ}}$ input terminal is shared with input port terminal K03 and the $\overline{\text{BACK}}$ output terminal with output port terminal R33. At initial reset, these terminal facilities are set as input port terminal and output port terminal, respectively. The terminals can be altered to function as $\overline{\text{BREQ}}/\overline{\text{BACK}}$ terminals by writing a "1" to register EBR.

For details on bus authority release, see "3.6.6 Bus authority release state" and "S1C88 Core CPU Manual".

5.2.5 Stack page setting

Although the stack area used to evacuate registers during subroutine calls can be arbitrarily moved to any area in data RAM using the stack pointer SP, its page address is set in registers SPP0–SPP7 in I/O memory.

At initial reset, SPP0-SPP7 are set to "00H" (page 0).

Since the internal RAM is arranged on page 0 (00D800H–00F7FFH), the stack area in single chip mode is inevitably located in page 0. In order to place the stack area at the final address in internal RAM, the stack pointer SP is placed at an initial setting of "F800H". (SP is pre-decremented.)

In the expansion mode, to place the stack in external expanded RAM, set a corresponding page to SPP0–SPP7. The page addresses to which SPP0– SPP7 can be set are 00H–27H and must be within a RAM area.

* A page is each recurrent 64K division of data memory beginning at address zero.

5.2.6 Control of system controller

Table 5.2.6.1 shows the control bits for the system controller.

D0 $\overline{CE0}$ $\overline{CE0}$ $(R30)$ Disable: DC $(R3x)$ output $\overline{CE0}$ enable $\overline{CE0}$ disable 0 R/W at DC output.			Table 5.2.6.1 System controller control bits									
(MCU) D6 CPUMOD CPU mode Maximum Minimum 0 R.W D5 - R.W register 1 0 0 R.W D3 - R.W register 1 0 0 R.W D3 - R.W register 1 0 0 R.W D2 CE2 CE2 (R32) CE signal output Enable/Disable CE denable CE disable 0 R.W this sesting are fixed D0 CE0 CE0 (R30) Disable: DC (R3x) output CE denable CE disable 0 R.W these setting are fixed 00FF00 D6 - R.W register 1 0 0 R.W D4 - R.W register 1 0 0 R.W D3 - R.W register 1 0 0 R.W D3 - R.W register 1 0 0 R.W D4 - R.W register 1 0	Address	Bit	Name		Fun	ction		1	0	SR	R/W	Comment
D5 - R/W register 1 0 0 R/W Register D4 - R/W register 1 0 0 R/W D3 - R/W register 1 0 0 R/W D3 - R/W register 1 0 0 R/W D4 - R/W register 1 0 0 R/W D5 CE2 (E2 CE3 ignal output CE3 enable CE3 disable 0 R/W https://withinto.com/attraction/at		D7						Expansion	Single chip	0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(MCU)	D6	CPUMOD	CPU mode				Maximum	Minimum	0	R/W	
D3 R/W register 1 0 0 R/W D2 CE2 CE2 (R32) CE signal output Enable/Disable CE2 cnable CE2 disable 0 R/W In Single chip mode, CE2 cnable CE2 disable 0 R/W In Single chip mode, CE2 cnable CE2 disable 0 R/W In Single chip mode, CE2 cnable CE2 disable 0 R/W In Single chip mode, CE2 cnable CE2 disable 0 R/W In CO output. In Co output		D5	-	R/W register				1	0	0	R/W	Reserved register
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D4	-	R/W register				1	0	0	R/W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	_	R/W register				1	0	0	R/W	
D0 CE0 CE0 RRW at DC output. 00FF00 D7 BUSMOD Bus mode Expansion - 1 R Expansion mode only (MPU) D6 CPUMOD CPU mode Maximum Minimum 0 R/W D4 R/W register 1 0 0 R/W D3 - R/W register 1 0 0 R/W D3 - R/W register 1 0 0 R/W D2 CE2 CE2 RE3 CE3 ingal output CE3 enable CE3 insable 0 R/W D0 CE0 CE0 (R30) Disable: DC (R3x) output CE3 enable CE3 insable 0 R/W 00FF01 D7 SPP7 Stack pointer page address (MSB) 1 0 0 R/W D4 SPP4 - Single chip mode: only 0 page 1 0 0 R/W D2 SPP2 - Single chip mode: only 0 fistate 1 <td></td> <td>D2</td> <td>CE2</td> <td>$\overline{\text{CE2}}$ (R32) $\overline{\text{C}}$</td> <td>E signal</td> <td>l output En</td> <td>able/Disable</td> <td>$\overline{\text{CE2}}$ enable</td> <td>$\overline{\text{CE2}}$ disable</td> <td>0</td> <td>R/W</td> <td>In Single chip mode,</td>		D2	CE2	$\overline{\text{CE2}}$ (R32) $\overline{\text{C}}$	E signal	l output En	able/Disable	$\overline{\text{CE2}}$ enable	$\overline{\text{CE2}}$ disable	0	R/W	In Single chip mode,
00FF00 D7 BUSMOD Bus mode Expansion - 1 R Expansion mode only (MPU) D6 CPUMOD CPU mode Maximum Minimum 0 R/W D5 - R/W register 1 0 0 R/W D4 - R/W register 1 0 0 R/W D3 R/W register 1 0 0 R/W D3 R/W register 1 0 0 R/W D2 CE2 CE2 (R32) CE signal output Enable/Disable CE3 enable CE3 disable 0 R/W D0 CE0 CE0 (R30) Disable: DC (R3x) output CE6 enable CE3 disable 0 R/W D6 SPP6 SPs page allocatable address > 1 0 0 R/W D3 SPP3 • Expansion mode: 0-27H page 1 0 0 R/W D3 SPP3 • Expansion mode: 0-27H page 1 0 0 <td></td> <td>D1</td> <td>CE1</td> <td>CE1 (R31) E</td> <td>able: 0</td> <td>CE signal o</td> <td>output</td> <td>$\overline{CE1}$ enable</td> <td>$\overline{\text{CE1}}$ disable</td> <td>0</td> <td>R/W</td> <td>these setting are fixed</td>		D1	CE1	CE1 (R31) E	able: 0	CE signal o	output	$\overline{CE1}$ enable	$\overline{\text{CE1}}$ disable	0	R/W	these setting are fixed
(MPU) D6 CPUMOD CPU mode Maximum Minimum 0 R/W D5 - R/W register 1 0 0 R/W D4 - R/W register 1 0 0 R/W D3 - R/W register 1 0 0 R/W D3 - R/W register 1 0 0 R/W D4 - R/W register 1 0 0 R/W D5 - R/W register 1 0 0 R/W D5 CE2 (R32) CE signal output CE5 enable CE1 disable 0 R/W D0 CE0 CE0 R8P Signal output CE0 enable CE0 disable 1 R/W 00FF01 D7 SPP7 Stack pointer page adlocatable address > 1 0 0 R/W D6 SPP6 - Single chip mode: only 0 page 1 0 0 R/W		D0	CE0	CE0 (R30) D	Disable: I	DC (R3x) o	output	$\overline{\text{CE0}}$ enable	$\overline{\text{CE0}}$ disable	0	R/W	at DC output.
D5 - R/W register 1 0 0 R/W D4 - R/W register 1 0 0 R/W D3 - R/W register 1 0 0 R/W D2 CE2 CE2 (R32) CE signal output Enable/Disable CE2 enable CE2 disable 0 R/W D0 CE0 CE30 Disable: DC (R3x) output CE1 enable CE1 disable 0 R/W D0 CE0 CE0 R30 Disable: DC (R3x) output 0 0 R/W D0 SPP6 Disable: DC (R3x) output 0 0 R/W D3 SPP6 SPP6 1 0 0 R/W D3 SPP3 + Single chip mode: only 0 page 1 0 0 R/W D3 SPP3 + Expansion mode: 0-27H page 1 0 0 R/W D3 SPP1 I 0 0 R/W D4 SPP6	00FF00	D7	BUSMOD	Bus mode				Expansion	-	1	R	Expansion mode only
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(MPU)	D6	CPUMOD	CPU mode				Maximum	Minimum	0	R/W	
D3 - R/W register 1 0 0 R/W D2 CE2 CE2 (R32) CE signal output Enable/Disable CE2 classhe 0 R/W D0 CE0 CE0 (R30) Disable: DC (R3x) output CE0 enable CE1 disable 0 R/W 00FF01 D7 SPP7 Stack pointer page address (MSB) 1 0 0 R/W D6 SPP6 SP page allocatable address > 1 0 0 R/W D5 SPP5 < SP page allocatable address > 1 0 0 R/W D3 SPP3 • Single chip mode: only 0 page 1 0 0 R/W D3 SPP3 • Expansion mode: 0-27H page 1 0 0 R/W D0 SPP0 (K03 and R33 terminal specification) R33 BACK Output port 0 R/W D6 WT2 Wait control register Number 0 R/W 0 R/W D6 <td< td=""><td></td><td>D5</td><td>-</td><td>R/W register</td><td></td><td></td><td></td><td>1</td><td>0</td><td>0</td><td>R/W</td><td>Reserved register</td></td<>		D5	-	R/W register				1	0	0	R/W	Reserved register
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D4	-	R/W register				1	0	0	R/W]
D1 CE1 CE1 (R31) Enable: CE signal output CEI enable CEI disable 0 R/W 00FF01 D7 SPP7 Stack pointer page address (MSB) 1 0 0 R/W D6 SPP6 SPP6 1 0 0 R/W D5 SPP5 < SP page allocatable address > 1 0 0 R/W D3 SPP3 • Expansion mode: 0-27H page 1 0 0 R/W D3 SPP1 • Expansion mode: 0-27H page 1 0 0 R/W D0 SPP1 • Expansion mode: 0-27H page 1 0 0 R/W D0 SPP1 • Expansion mode: 0-27H page 1 0 0 R/W D0 SPP1 • Expansion mode: 0-27H page 1 0 0 R/W D0 SPP1 • Expansion mode: 0-27H page 1 0 0 R/W D0 SPP1 • Expansion • Expansion		D3	-	R/W register				1	0	0	R/W	1
D1 CE1 CE1 (R31) Enable: CE signal output CET enable CET disable 0 R/W 00FF01 D7 SPP7 Stack pointer page address (MSB) 1 0 0 R/W 00FF01 D7 SPP7 Stack pointer page address (MSB) 1 0 0 R/W D6 SPP6 - - 1 0 0 R/W D5 SPP5 < SP page allocatable address > 1 0 0 R/W D3 SPP3 • Expansion mode: 0-27H page 1 0 0 R/W D1 SPP1 • Expansion mode: 0-27H page 1 0 0 R/W D1 SPP1 • Expansion mode: 0-27H page 1 0 0 R/W D1 SPP1 · Expansion mode: 0-27H page 1 0 0 R/W D0 SPP0 (K03 and R33 terminal specification) R33 BACK Output p		D2	CE2	$\overline{\text{CE2}}$ (R32) $\overline{\text{C}}$	E signal	l output En	able/Disable	$\overline{\text{CE2}}$ enable	CE2 disable	0	R/W	
OOFF01 D7 SPP7 Stack pointer page address (MSB) 1 0 0 R/W D6 SPP6 <sp address="" allocatable="" page=""> 1 0 0 R/W D4 SPP4 • Single chip mode: only 0 page 1 0 0 R/W D3 SPP3 • Expansion mode: 0-27H page 1 0 0 R/W D2 SPP2 • 1 0 0 R/W D2 SPP3 • Expansion mode: 0-27H page 1 0 0 R/W D2 SPP1 • 1 0 0 R/W D0 SPP0 (LSB) 1 0 0 R/W 00FF02 D7 EBR Bus release enable register K03 BREQ Input port 0 R/W 0 WT2 Wait control register Number 0 R/W 0 R/W 0 0 1 0 8 0</sp>		D1	CE1	CE1 (R31) E	Enable: 0	CE signal o	output	CE1 enable	CE1 disable	0	R/W	
00FF01 D7 SPP7 Stack pointer page address (MSB) 1 0 0 R/W D6 SPP6 <		D0	CE0	CE0 (R30) D	Disable: I	DC (R3x) o	output	$\overline{\text{CE0}}$ enable	$\overline{CE0}$ disable	1	R/W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00FF01						-	1	0	0	R/W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D6	SPP6					1	0	0	R/W	
D3 SPP3 • Expansion mode: 0-27H page 1 0 0 R/W D2 SPP2 1 0 0 R/W D1 SPP1 1 0 0 R/W D0 SPP0 (LSB) 1 0 0 R/W 00FF02 D7 EBR Bus release enable register K03 BREQ Input port 0 R/W D6 WT2 Wait control register Number 0 R/W 0 R/W D5 WT1 1 1 0 12 0 R/W D4 WT0 0 1 0 8 0 R/W D3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D3 CLKCHG CPU operating clock switch ON ON ON R/W D3 SDSC3 OSC3 oscillation On/Off control On On Off 1 R/W D4 I- R/W register 1 0 0 R/W Reserved register <td></td> <td>D5</td> <td>SPP5</td> <td>< SP page allo</td> <td>ocatable</td> <td>address ></td> <td></td> <td>1</td> <td>0</td> <td>0</td> <td>R/W</td> <td></td>		D5	SPP5	< SP page allo	ocatable	address >		1	0	0	R/W	
D2 SPP2 1 0 0 R/W D1 SPP1 1 0 0 R/W 00F02 D7 EBR Bus release enable register K03 BREQ Input port 0 R/W 00FF02 D7 EBR Bus release enable register K03 BREQ Input port 0 R/W D6 WT2 Wait control register Number 0 R/W 0 R/W D6 WT2 Wait control register Number 0 R/W 0 R/W D5 WT1 1 0 12 0 R/W 0 R/W D5 WT1 1 0 12 0 R/W R/W 0 R/W		D4	SPP4	• Single chip r	node: or	nly 0 page		1	0	0	R/W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D3	SPP3	• Expansion m	node: 0-	-27H page		1	0	0	R/W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D2	SPP2	-				1	0	0	R/W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1	0	0	R/W	
Image: Kold R33 terminal specification) R33 BACK Output port D6 WT2 Wait control register Number 0 R/W $\frac{WT2}{1}$ $\frac{WT1}{1}$ $\frac{WT0}{14}$ of state 0 R/W D5 WT1 1 1 0 12 0 R/W D5 WT1 1 0 12 0 R/W R/W D4 WT0 0 1 16 0 R/W D4 WT0 0 1 2 0 0 R/W D3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D1 – R/W register 1 0 0 R/W							(LSB)	1	0	0	R/W	
Image: Kold R33 terminal specification) R33 BACK Output port D6 WT2 Wait control register Number 0 R/W $\frac{WT2}{1}$ $\frac{WT1}{1}$ $\frac{WT0}{14}$ of state 0 R/W D5 WT1 1 1 0 12 0 R/W D5 WT1 1 0 12 0 R/W R/W D4 WT0 0 1 16 0 R/W D4 WT0 0 1 2 0 0 R/W D3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D1 – R/W register 1 0 0 R/W	00FF02	D7	EBR	Bus release en	able reg	ister	K03	BREQ	Input port	0	R/W	
WT2 WT1 WT0 of state 1 1 1 14 1 1 0 12 1 0 1 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 8 0 1 2 0 0 4 0 0 1 2 0 0 No wait 0 R/W D1 - R/W register 1 0 R/W					-		tion) R33					
WT2 WT1 WT0 of state 1 1 1 14 1 1 0 12 1 0 1 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 8 0 1 2 0 0 4 0 0 1 2 0 0 No wait 0 R/W D1 - R/W register 1 0 R/W		D6	WT2							0	R/W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	WT0						
D5 W11 1 0 12 0 R/W 1 0 1 10 8 - - - D4 WT0 0 1 0 4 0 R/W D3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D2 SOSC3 OSC3 oscillation On/Off control On Off 1 R/W D1 - R/W register 1 0 0 R/W Reserved register												
I 0 1 10 1 0 1 10 1 0 0 8 0 1 1 6 0 1 0 4 0 0 1 2 0 0 1 2 0 0 No wait 0 R/W D3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D2 SOSC3 OSC3 oscillation On/Off control On Off 1 R/W D1 – R/W register 1 0 0 R/W		D5	WT1				12			0	R/W	
D4 WT0 0 1 1 6		-										
D4 WT0 0 1 0 4 0 R/W D3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D2 SOSC3 OSC3 oscillation On/Off control On Off 1 R/W D1 – R/W register 1 0 0 R/W Reserved register												
0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D2 SOSC3 OSC3 oscillation On/Off control On Off 1 R/W D1 - R/W register 1 0 0 R/W Reserved register		D4	wто		-					0	R/W	
Image: D3 CLKCHG CPU operating clock switch OSC3 OSC1 1 R/W D2 SOSC3 OSC3 oscillation On/Off control On Off 1 R/W D1 - R/W register 1 0 0 R/W Reserved register					-					Ŭ		
D2 SOSC3 OSC3 oscillation On/Off control On Off 1 R/W D1 - R/W register 1 0 0 R/W				0	0	0						
D2 SOSC3 OSC3 oscillation On/Off control On Off 1 R/W D1 - R/W register 1 0 0 R/W		D3	CLKCHG	CPU operating	g clock s	witch		OSC3	OSC1	1	R/W	1
D1 – R/W register 1 0 0 R/W Reserved register												1
			_									Reserved register
		D0	_	0						0		1

Table 5.2.6.1 System controller control bits

Note: All the interrupts including $\overline{\text{NMI}}$ are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

BUSMOD, CPUMOD: 00FF00H•D7, D6

Bus mode and CPU mode are set as shown in Table 5.2.6.2.

MCU/MPU	Setting	g value	Puo modo	CPU mode
terminal	BUSMOD	CPUMOD	Dus moue	
1 (MCU mode)	1	1	Expansion	Maximum
	1	0		Minimum
	0	1	Single	Maximum
	0	0	chip	Minimum
0 (MPU mode)	1	1	Expansion	Maximum
	1	0		Minimum
	0	1		Maximum
	0	0		Minimum

Table 5.2.6.2 Bus mode and CPU mode settings

The single chip mode configuration is only possible when this IC is used in the MCU mode. The single chip mode setting is incompatible with the MPU mode, since this mode does not utilize internal ROM.

At initial reset, in the MCU mode the unit is set to single chip (minimum) mode and in the MPU mode the expansion (minimum) mode is used to select the applicable mode.

CE0–CE2: 00FF00H•D0–D2

Sets the \overline{CE} output terminals being used.

When "1" is written: \overline{CE} output enable When "0" is written: \overline{CE} output disable Valid Reading:

CE output is enabled when a "1" is written to registers CE0–CE2 which correspond to the \overline{CE} output being used. A "0" written to any of the registers disables CE signal output from that terminal and it reverts to its alternate function as an output port terminal (R30-R32).

At initial reset, register CE0 is set to "0" in the MCU mode and in the MPU mode, "1" is set in the register. Registers CE1-CE2 are always set to "0" regardless of the MCU/MPU mode setting.

Note: To avoid a malfunction from an interrupt generated before the bus configuration is initialized, all interrupts including NMI are masked until you write an optional value into address "00FF00H".

SPP0-SPP7: 00FF01H

Sets the page address of stack area. In single chip mode, set page address to "00H". In expansion mode, it can be set to any value within the range "00H"-"27H".

Since a carry and borrow from/to the stack pointer SP is not reflected in register SPP, the upper limit on continuous use of the stack area is 64K bytes. At initial reset, this register is set to "00H" (page 0).

Note: To avoid a malfunction from an interrupt generated before the bus configuration is initialized, all interrupts including NMI are disabled, until you write an optional value into "00FF01H" address. Furthermore, to avoid generating an interrupt while the stack area is being set. all interrupts including NMI are disabled in one instruction execution period after writing to address "00FF01H".

WT0-WT2: 00FF02H•D4-D6

How WAIT state settings are performed. The number of WAIT states to be inserted based on register settings is as shown in Table 5.2.6.3.

	Table 5.2	2.6.3 Sett	ting WAIT states
WT2	WT1	WT0	Number of inserted states
1	1 1		14
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12
1			10
1			8
0	1	1	6
0	1	0	4
0	0	1	2
0	0	0	No wait

The length of one state is a 1/2 clock cycle.

At initial reset, this register is set to "0" (no wait).

EBR: 00FF02H•D7

Sets the $\overline{BREQ}/\overline{BACK}$ terminals function.

When "1" is written:	BREQ/BACK enabled
When "0" is written:	BREQ/BACK disabled
Reading:	Valid

How $\overline{\text{BREQ}}$ and $\overline{\text{BACK}}$ terminal functions are set. Writing "1" to EBR enables $\overline{BREQ}/\overline{BACK}$ input/ output. Writing "0" sets the BREQ terminal as input port terminal K03 and the BACK terminal as output port terminal R33.

At initial reset, EBR is set to "0" (BREQ/BACK disabled).

5.2.7 Programming notes

- All the interrupts including NMI are masked, until you write the optional value into both the "00FF00H" and "00FF01H" addresses. Consequently, even if you do not change the content of this address (You use the initial value, as is.), you should still be sure to perform the writing operation using the initialization routine.
- (2) When setting stack fields, including page addresses as well, you should write them in the order of the register SPP ("00FF01H") and the stack pointer SP.

Example: When setting the "178000H" address

- LD EP, #00H
- LD HL, #0FF01H LD HL, #171L During this period the
- LD [HL], #17H interrupts (including
- LD SP, #8000H \square $\frac{\text{Interlaps}}{\text{NMI}}$ are masked.

5.3 Watchdog Timer

5.3.1 Configuration of watchdog timer

The S1C88650 is equipped with a watchdog timer driven by OSC1 as source oscillation. The watchdog timer must be reset periodically by software, and if reset does not take place within the selected period, a non-maskable interrupt signal is generated and output to the CPU. The watchdog timer starts operating after initial reset, however, it can be stopped by the software.

The $\overline{\rm NMI}$ generation cycle by the watchdog timer can be selected by mask option.

Watchdog timer NMI generation cycle 32768/fosc1 (0.75-1-sec cycle when fosc1 = 32 kHz) 5536/fosc1 (1.5-2-sec cycle when fosc1 = 32 kHz) 131072/fosc1 (3-4-sec cycle when fosc1 = 32 kHz) 262144/fosc1 (6-8-sec cycle when fosc1 = 32 kHz)

Figure 5.3.1.1 is a block diagram of the watchdog timer.

By running watchdog timer reset during the main routine of the program, it is possible to detect program runaway as if watchdog timer processing had not been applied. Normally, this routine is integrated at points that are regularly being processed.

The watchdog timer continues to operate during HALT and when HALT state is continuous for longer than the selected period, the CPU starts exception processing.

During SLEEP, the watchdog timer is stopped.

Note: The NMI generation cycles in the watchdog timer mask option list represent maximum values. A maximum minus (<selected optional cycle> / 4) seconds of error occurs depending on the watchdog timer reset timing. For example, when 131072/fosc1 is selected by mask option, the actual NMI generation cycle is within the range of 98304/fosc1 to 131072/fosc1 seconds.

5.3.2 Interrupt function

In cases where the watchdog timer is not periodically reset in software, the watchdog timer outputs an interrupt signal to the CPU's $\overline{\rm NMI}$ (level 4) input. Unmaskable and taking priority over other interrupts, this interrupt triggers the generation of exception processing. See the "S1C88 Core CPU Manual" for more details on $\overline{\rm NMI}$ exception processing.

This exception processing vector is set at 000004H.

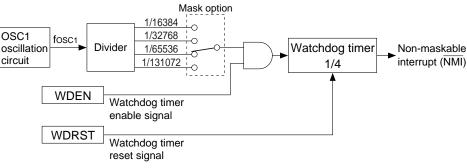


Fig. 5.3.1.1 Block diagram of watchdog timer

5.3.3 Control of watchdog timer

Table 5.3.3.1 shows the control bits for the watchdog timer.

Address	Bit	Name			Functior	<i>ווו אימוכוומסק ווו</i> . ו	1	0	SR	R/W	Comment
00FF40	D7	WDEN	Watchdo	g timer e	nable		Enable	Disable	1	R/W	
	D6	FOUT2	FOUT fr	equency	selection				0	R/W	
			FOUT2	FOUT1	FOUT0	Frequency fosc1 / 1					
	D5	FOUT1	1	1 0	0 1	fosc1 / 2 fosc1 / 4			0	R/W	
	D4	FOUT0	1 0 0	0 1 1	0 1 0	fosc1 / 8 fosc3 / 1 fosc3 / 2				R/W	
	51		0	0 0	1 0	fosc3 / 4 fosc3 / 8			0	10 11	
	D3	FOUTON	FOUT ou	utput con	trol		On	Off	0	R/W	
	D2	WDRST	Watchdo	Watchdog timer reset			Reset	No operation	-	W	Constantly "0" when
	D1	TMRST	Clock tin	Clock timer reset			Reset	No operation	_	W	being read
	D0	TMRUN	Clock tin	ner Run/	Stop cont	rol	Run	Stop	0	R/W	

Table 5.3.3.1 Watchdog timer control bits

WDEN: 00FF40H•D7

Selects whether the watchdog timer is used (enabled) or not (disabled).

When "1" is written:EnabledWhen "0" is written:DisabledReading:Valid

When "1" is written to the WDEN register, the watchdog timer starts count operation. When "0" is written, the watchdog timer does not count and does not generate the interrupt ($\overline{\text{NMI}}$). At initial reset, this register is set to "1".

WDRST: 00FF40H•D2

Resets the watchdog timer.

When "1" is written:Watchdog timer is resetWhen "0" is written:No operationReading:Constantly "0"

By writing "1" to WDRST, the watchdog timer is reset, after which it is immediately restarted. Writing "0" will mean no operation.

Since WDRST is for writing only, it is constantly set to "0" during readout.

5.3.4 Programming notes

- (1) When the watchdog timer is being used, the software must reset it within the cycles selected by mask option.
- (2) Do not execute the SLP instruction for 2 msec after a $\overline{\rm NMI}$ interrupt has occurred (when fosc1 is 32.768 kHz).
- (3) Because the watchdog timer is set in operation state by initial reset, set the watchdog timer to disabled state (not used) before generating an interrupt (NMI) if it is not used.
- (4) The NMI generation cycles in the watchdog timer mask option list represent maximum values. A maximum minus (<selected optional cycle> / 4) seconds of error occurs depending on the watchdog timer reset timing. For example, when 131072/fosc1 is selected by mask option, the actual NMI generation cycle is within the range of 98304/fosc1 to 131072/fosc1 seconds.

5.4 Oscillation Circuits

5.4.1 Configuration of oscillation circuits

The S1C88650 is twin clock system with two internal oscillation circuits (OSC1 and OSC3). The OSC3 oscillation circuit generates the mainclock (Max. 8.2 MHz) to run the CPU and some peripheral circuits in high speed, and the OSC1 oscillation circuit generates the sub-clock (Typ. 32.768 kHz) for low-power operation. Figure 5.4.1.1 shows the configuration of the oscillation circuit.

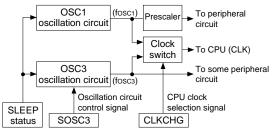


Fig. 5.4.1.1 Configuration of oscillation circuits

At initial reset, OSC3 oscillation circuit is selected for the CPU operating clock. ON/OFF switching of the OSC3 oscillation circuit and switching of the system clock between OSC3 and OSC1 are controlled in software. OSC3 circuit is utilized when high speed operation of the CPU and some peripheral circuits become necessary. Otherwise, OSC1 should be used to generate the operating clock and OSC3 circuit placed in a stopped state in order to reduce current consumption.

5.4.2 Mask option

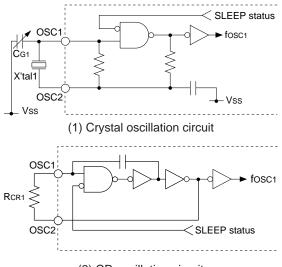
OSC1 oscillation circuit

- □ Crystal oscillation circuit
- CR oscillation circuit
- OSC3 oscillation circuit
 - \Box Crystal oscillation circuit
 - Ceramic oscillation circuit
 - \Box CR oscillation circuit

In terms of the oscillation circuit types for OSC1, either crystal oscillation or CR oscillation can be selected with the mask option.

In terms of the oscillation circuit types for OSC3, either crystal oscillation, ceramic oscillation or CR oscillation can be selected with the mask option, in the same way as OSC1.

Note: Do not select CR oscillation for the OSC1 oscillation circuit when crystal oscillation is selected for the OSC3 oscillation circuit. When such a selection is made, the OSC3 clock may be supplied to the internal circuits even though the OSC3 oscillation has not stabilized.


5.4.3 OSC1 oscillation circuit

The OSC1 oscillation circuit generates the 32.768 kHz (Typ.) system clock which is utilized during low speed operation (low power mode) of the CPU and peripheral circuits. Furthermore, even when OSC3 is utilized as the system clock, OSC1 continues to generate the source clock for the clock timer and stopwatch timer.

This oscillation circuit stops when the SLP instruction is executed.

In terms of the oscillation circuit types, either crystal oscillation or CR oscillation can be selected with the mask option.

Figure 5.4.3.1 shows the configuration of the OSC1 oscillation circuit.

(2) CR oscillation circuit

Fig. 5.4.3.1 OSC1 oscillation circuit

When crystal oscillation is selected, a crystal oscillation circuit can be easily formed by connecting a crystal oscillator X'tal1 (Typ. 32.768 kHz) between the OSC1 and OSC2 terminals along with a trimmer capacitor CG1 (5–25 pF) between the OSC1 terminal and Vss.

When CR oscillation is selected, the CR oscillation circuit (Max. 200 kHz) is formed merely by connecting a resistor (RCR1) between OSC1 and OSC2 terminals.

5.4.4 OSC3 oscillation circuit

The OSC3 oscillation circuit generates the system clock when the CPU and some peripheral circuits are in high speed operation.

This oscillation circuit stops when the SLP instruction is executed, or the SOSC3 register is set to "0". In terms of oscillation circuit types, any one of crystal oscillation, ceramic oscillation or CR oscillation can be selected with the mask option. Figure 5.4.4.1 shows the configuration of the OSC3 oscillation circuit.

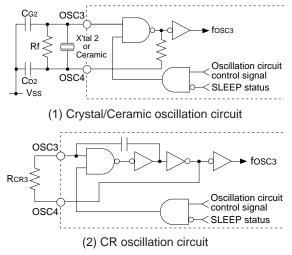
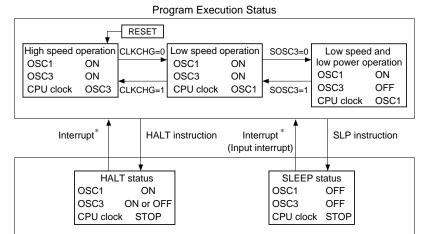


Fig. 5.4.4.1 OSC3 oscillation circuit

When crystal or ceramic oscillation circuit is selected, the crystal or ceramic oscillation circuit (Max. 8.2 MHz) are formed by connecting either a crystal oscillator (X'tal2) or a combination of ceramic oscillator (Ceramic) and feedback resistor (Rf) between OSC3 and OSC4 terminals and connecting two capacitors (CG2, CD2) between the OSC3 terminal and Vss, and between the OSC4 terminal and Vss, respectively. When CR oscillation is selected, the CR oscillation circuit (Max. 2.2 MHz) is formed merely by connecting a resistor (RCR3) between OSC3 and OSC4 terminals.

5.4.5 Switching the CPU clocks

You can use either OSC1 or OSC3 as the system clock for the CPU and you can switch over by means of software.


You can save power by turning the OSC3 oscillation circuit off while the CPU is operating in OSC1. When you must operate on OSC3, you can change to high speed operation by turning the OSC3 oscillation circuit ON and switching over the system clock.

In this case, since several msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON, you should switch over the clock after stabilization time has elapsed.

When switching over from the OSC3 to the OSC1, turn the OSC3 oscillation circuit OFF immediately following the clock changeover.

When switching the system clock from OSC3 to OSC1 immediately after the power is turned on, it is necessary to wait for the OSC1 oscillation to stabilize before the clock can be switched. The OSC3 oscillation may take several tens of msec to several seconds until it has completely stabilized. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 8, "ELECTRICAL CHARACTERISTICS".)

Figure 5.4.5.1 indicates the status transition diagram for the clock changeover.

Standby Status

* The return destination from the standby status becomes the program execution status prior to shifting to the standby status. *Fig. 5.4.5.1 Status transition diagram for the clock changeover*

5.4.6 Control of oscillation circuit

Table 5.4.6.1 shows the control bits for the oscillation circuits.

Address	Bit	Name	Function			1	0	SR	R/W	Comment	
00FF02	D7	EBR	Bus release	Bus release enable register K03			BREQ	Input port	0	R/W	
			(K03 and R	33 termina	l specificat	tion) R33	BACK	Output port			
	D6	WT2	Wait control	Wait control register Number					0	R/W	
			WT2	WT1	WT0	of state					
			1	1	1	14					
	D5	WT1	1	1	0	12			0	R/W	
			1	0	1	10					
			1	0	0	8					
			0	1	1	6					
	D4	WT0	0	1	0	4			0	R/W	
			0	0	1	2					
			0	0	0	No wait					
	D3	CLKCHG	CPU operat	ing clock	switch		OSC3	OSC1	1	R/W	
	D2	SOSC3	OSC3 oscillation On/Off control		On	Off	1	R/W			
	D1	-	R/W registe	er			1	0	0	R/W	Reserved register
	D0	-	R/W registe	er			1	0	0	R/W	

Table 5.4.6.1 Oscillation circuit control bits

SOSC3: 00FF02H•D2

Controls the ON and OFF settings of the OSC3 oscillation circuit.

When "1" is written:OSC3 oscillation ONWhen "0" is written:OSC3 oscillation OFFReading:Valid

When the CPU and some peripheral circuits are to be operated at high speed, SOSC3 is to be set to "1". At all other times, it should be set to "0" in order to reduce current consumption.

At initial reset, SOSC3 is set to "1" (OSC3 oscillation ON).

CLKCHG: 00FF02H•D3

Selects the operating clock for the CPU.

When "1" is written: OSC3 clock When "0" is written: OSC1 clock Reading: Valid

When the operating clock for the CPU is switched to OSC3, CLKCHG should be set to "1" and when the clock is switched to OSC1, CLKCHG should be set to "0".

At initial reset, CLKCHG is set to "1" (OSC3 clock).

5.4.7 Programming notes

- When the high speed CPU operation is not necessary, you should operate the peripheral circuits according to the setting outline indicate below.
 - CPU operating clock OSC1
 - OSC3 oscillation circuit OFF (When the OSC3 clock is not necessary for some peripheral circuits.)
- (2) Since several msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON. Consequently, you should switch the CPU operating clock (OSC1 → OSC3) after allowing for a sufficient waiting time once the OSC3 oscillation goes ON. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 8, "ELECTRICAL CHARACTERIS-TICS".)
- (3) When switching the clock from OSC3 to OSC1, be sure to switch OSC3 oscillation OFF with separate instructions. Using a single instruction to process simultaneously can cause a malfunction of the CPU.
- (4) When switching the system clock from OSC3 to OSC1 immediately after the power is turned on, it is necessary to wait the OSC1 oscillation to stabilize before the clock can be switched. The OSC3 oscillation takes several tens of msec to several seconds until it has completely stabilized. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 8, "ELECTRICAL CHARACTERISTICS".)

5.5 Input Ports (K ports)

5.5.1 Configuration of input ports

The S1C88650 is equipped with 8 input port bits (K00–K07) all of which are usable as general purpose input port terminals with interrupt function. K04–K07 terminals doubles as the external clock (EXCL0–EXCL3) input terminal of the programmable timer (event counter) with input port functions sharing the input signal as is. (See "5.10 Programmable Timer")

Furthermore, it should be noted, however, that K03 terminal is shared with the bus authority release request signal (BREQ) input terminal. Function assignment of this terminal can be selected in software. When this terminal is selected for BREQ signal, K03 cannot be used as an input port. (See "5.2 System Controller and Bus Control") In the explanation below, it is assumed that K03 is set as an input port.

Figure 5.5.1.1 shows the structure of the input port.

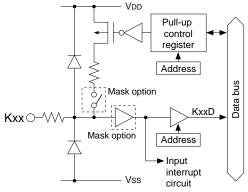


Fig. 5.5.1.1 Structure of input port

Each input port terminal is directly connected via a three-state buffer to the data bus. Furthermore, the input signal state at the instant of input port readout is read in that form as data.

5.5.2 Mask option

Input port pull-up resisto	ors
K00 🗆 With resistor	□ Gate direct
K01 🗆 With resistor	□ Gate direct
K02 🗆 With resistor	\Box Gate direct
K03 🗆 With resistor	\Box Gate direct
K04 🗆 With resistor	\Box Gate direct
K05 🗆 With resistor	\Box Gate direct
K06 🗆 With resistor	\Box Gate direct
K07 🗆 With resistor	□ Gate direct
Input port Input I/F level	
$K00 \dots \square CMOS$ level	\Box CMOS schmitt
K01 CMOS level	CMOS schmitt
K02 🗆 CMOS level	CMOS schmitt
K03 🗌 CMOS level	CMOS schmitt
K04	CMOS schmitt
K05 CMOS level	□ CMOS schmitt
K06 CMOS level	□ CMOS schmitt
K07 CMOS level	□ CMOS schmitt

Input ports K00–K07 are all equipped with pull-up resistors. The mask option can be used to select 'With resistor' or 'Gate direct' for each port (bit). Also the interface level, either CMOS level or CMOS Schmitt level, can be selected for each port (in a bit units).

5.5.3 Pull-up control

When "With resistor" is selected by mask option, the software can enable and disable the pull-up resistor for each port (1-bit units).

The pull-up resistor becomes effective by writing "1" to the pull-up control register PULK0x that corresponds to each port, and the input line is pulled up. When "0" has been written, no pull-up is done.

When "Gate direct" is selected by mask option, the corresponding pull-up control register is disconnected from the input line, so it can be used

as a general-purpose register. At initial reset, the pull-up control register is set to

At initial reset, the pull-up control register is set to "1" (pulled up).

The input port with a pull-up resistor suits input from the push switch and key matrix.

When changing the input terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an input port. In particular, special attention should be paid to key scan for key matrix formation. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

The input port without a pull-up resistor is suits for slide switch input and interfacing with other LSIs. In this case, take care that a floating state does not occur in input.

For unused ports, select "With resistor" and enable pull-up using the pull-up control registers.

5.5.4 Interrupt function and input comparison register

All the input ports (K00–K07) provide the interrupt functions. The conditions for issuing an interrupt can be set by the software.

When the interrupt generation condition set for a terminal is met, the interrupt factor flag FK00–FK07 corresponding to the terminal is set at "1" and an interrupt is generated.

Interrupt can be prohibited by setting the interrupt enable registers EK00–EK07 for the corresponding interrupt factor flags.

Furthermore, the priority level for input interrupt can be set at the desired level (0–3) using the interrupt priority registers PK00–PK01.

For details on the interrupt control registers for the above and on operations subsequent to interrupt generation, see "5.14 Interrupt and Standby Status".

The exception processing vectors for each interrupt factor are set as follows:

K07 input interrupt: 000006H K06 input interrupt: 000008H K05 input interrupt: 00000AH K04 input interrupt: 00000CH K03 input interrupt: 00000EH K02 input interrupt: 000010H K01 input interrupt: 000012H K00 input interrupt: 000014H

Figure 5.5.4.1 shows the configuration of the input interrupt circuit.

The input comparison register KCP selects whether the interrupt for each input port will be generated on the rising edge or the falling edge of input. When the K0x input signal changes to the status set by the input comparison register KCP0x, the interrupt factor flag FK0x is set to "1" and an interrupt occurs.

The input port has a chattering-eliminate circuit that checks input level to avoid unnecessary interrupt generation due to chattering. There are two separate chattering-eliminate circuits for K00– K03 and K04–K07 and they can be set up individually. The CTK00x–CTK02x registers allow selection of signal level check time as shown in Table 5.5.4.1.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Input Ports)

CTK02x	CTK01x	CTK00x	Check time	(*)
1	1	1	4/fosc3	(2 µs)
1	1	0	2/fosc3	(1 µs)
1	0	1	1/fosc3	(0.5 µs)
1	0	0	4096/fosc1	(128 ms)
0	1	1	2048/fosc1	(64 ms)
0	1	0	512/fosci	(16 ms)
0	0	1	128/fosc1	(4 ms)
0	0	0	None	-

Table 5.5.4.1 Setting the input level check time

*: When OSC1 = 32 kHz, OSC3 = 2 MHz

- Notes: Be sure to disable interrupts before changing the contents of the CTK0x register. Unnecessary interrupts may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EK0x.
 - The chattering-eliminate check time means the maximum pulse width that can be eliminated. The valid interrupt input needs a pulse width of the set check time (minimum) to twice that of the check time (maximum).
 - The internal signal may oscillate if the rise / fall time of the input signal is too long because the input signal level transition to the threshold level duration of time is too long. This causes the input interrupt to malfunction, therefore setup the input signal so that the rise/fall time is 25 nsec or less.

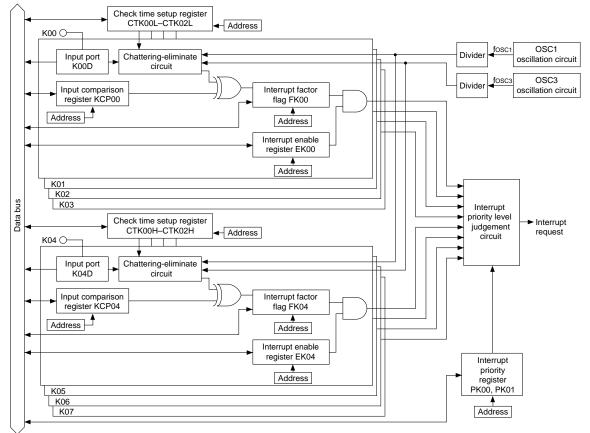


Fig. 5.5.4.1 Configuration of input interrupt circuit

5.5.5 Control of input ports

Table 5.5.5.1 shows the input port control bits.

· · · · ·			Table 5.5.5.1(a) Inpu	-		1		-
Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF52		KCP07	K07 input comparison register					
		KCP06	K06 input comparison register					
		KCP05	K05 input comparison register	Interrup	t Interrupt			
		KCP04	K04 input comparison register	generate	d generated	1	R/W	
		KCP03	K03 input comparison register	at falling	g at rising	1	10	
		KCP02	K02 input comparison register	edge	edge			
	D1	KCP01	K01 input comparison register					
	D0	KCP00	K00 input comparison register					
00FF54	D7	K07D	K07 input port data					
	D6	K06D	K06 input port data					
	D5	K05D	K05 input port data					
	D4	K04D	K04 input port data	High lev	el Low level		D	
	D3	K03D	K03 input port data	input	input	-	R	
	D2	K02D	K02 input port data					
	D1	K01D	K01 input port data					
	D0	K00D	K00 input port data					
00FF56	D7	PULK07	K07 pull-up control register					
	D6	PULK06	K06 pull-up control register					
	D5	PULK05	K05 pull-up control register					
			K04 pull-up control register					
	D3	PULK03	K03 pull-up control register	On	Off	1	R/W	
			K02 pull-up control register					
			K01 pull-up control register					
			K00 pull-up control register					
00FF58	D7	_	_	_	_	-		"0" when being read
	D6	СТК02Н	K04–K07 port chattering-eliminate setup			0	R/W	
			(Input level check time) Check tin	ne				
			CTK02H CTK01H CTK00H [sec]	_			 	
	D5	CTK01H	1 1 1 4/fosca 1 1 0 2/fosca			0	R/W	
			1 0 1 1/fosca					
		OTKOOL	1 0 0 4096/fos 0 1 1 2048/fos					
	D4	СТК00Н	0 1 0 512/fost	1		0	R/W	
			0 0 1 128/foso 0 0 0 None	1				
	D3	_	-	_		<u> </u>		"0" when being read
		CTK02L	K00-K03 port chattering-eliminate setup			0	R/W	, , , , , , , , , , , , , , , , , , ,
			(Input level check time) Check tim	ne				
			CTK02L CTK01L CTK00L [sec]					
	D1	CTK01L	1 1 1 4/fosca 1 1 0 2/fosca			0	R/W	
			1 0 1 1/fosca					
			1 0 0 4096/fos 0 1 1 2048/fos					
	D0	CTK00L	0 1 0 512/fost	1		0	R/W	
			0 0 1 128/foso	1				
			0 0 0 None			1		

Table 5.5.5.1(a) Input port control bits

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Input Ports)

Address	Bit	Name	Function			0	SR	R/W	Comment
00FF20	D7	PK01	K00-K07 interrupt priority register	PK01 PSIE1	PK01 PK00 Priority PSIF1 PSIF0 level		0	R/W	
	D6	PK00		$\frac{1011}{1}$	1	Level 3			
	D5	PSIF1	Serial interface interrupt priority register	1	0	Level 2 Level 1	0	R/W	
	D4	PSIF0		0	0	Level 0			
	D3	-	_	-		-	-		Constantly "0" when
	D2	-	_	-		-	-		being read
	D1	PTM1	Clock timer interrupt priority register	PTM1 1	PTM 1	0 Priority level Level 3	0	R/W	
		PTM0		1	0	Level 2			
		PTIVIU		0	1	Level 1 Level 0			
00FF24	D7	EK07	K07 interrupt enable			Levers			
	D6	EK06	K06 interrupt enable						
	D5	EK05	K05 interrupt enable						
	D4	EK04	K04 interrupt enable	Interr	upt	Interrupt	0	R/W	
	D3	EK03	K03 interrupt enable	enab	ole	disable	0	K/W	
	D2	EK02	K02 interrupt enable						
	D1	EK01	K01 interrupt enable						
	D0	EK00	K00 interrupt enable						
00FF28	D7	FK07	K07 interrupt factor flag	(R))	(R)			
	D6	FK06	K06 interrupt factor flag	Interr	upt	No interrupt			
	D5	FK05	K05 interrupt factor flag	factor	r is	factor is			
	D4	FK04	K04 interrupt factor flag	genera	ated	generated	0	R/W	
	D3	FK03	K03 interrupt factor flag	w	、 、	(W)	0	K/W	
	D2	FK02	K02 interrupt factor flag	Res	´	(w) No operation			
	D1	FK01	K01 interrupt factor flag	Res	CL	no operation			
	D0	FK00	K00 interrupt factor flag						

Table 5.5.5.1(b) Input port control bits

K00D–K07D: 00FF54H

Input data of input port terminal K0x can be read out.

When "1" is read:	HIGH level
When "0" is read:	LOW level
Writing:	Invalid

The terminal voltage of each of the input port K00–K07 can be directly read out as either a "1" for HIGH (VDD) level or a "0" for LOW (VSS) level. This bit is exclusively for readout and are not usable for write operations.

PULK00-PULK07: 00FF56H

Controls the input pull-up resistor.

When "1" is written: Pull-up ON When "0" is written: Pull-up OFF Reading: Valid

PULK0x is the pull-up control register corresponding to the input port K0x that turns the pull-up resistor built into the input port ON and OFF.

When "Gate direct" is selected by mask option, the corresponding pull-up control register is disconnected from the input line, so it can be used as a general-purpose register.

When "1" is written to PULK0x, the corresponding input port K0x is pulled up to high. When "0" is written, the input port is not pulled up. At initial reset, this register is set to "1" (Pull-up ON).

KCP00-KCP07: 00FF52H

Sets the interrupt generation condition (interrupt generation timing) for input port terminals K00–K07.

When "1" is written:Falling edgeWhen "0" is written:Rising edgeReading:Valid

KCP0x is the input comparison register which corresponds to the input port K0x. Interrupt in those ports which have been set to "1" is generated on the falling edge of the input and in those set to "0" on the rising edge.

At initial reset, this register is set to "1" (falling edge).

CTK00L-CTK02L: 00FF58H•D0-D2

Sets the input level check time of the chatteringeliminate circuit for the K00–K03 input port interrupts as shown in Table 5.5.5.2.

Table 5.5.5.2 Setting the input level check time

CTK02L	CTK01L	CTK00L	Input level check time [sec]
1	1	1	4/fosc3
1	1	0	2/fosc3
1	0	1	1/fosc3
1	0	0	4096/fosc1
0	1	1	2048/fosc1
0	1	0	512/fosc1
0	0	1	128/fosc1
0	0	0	None

Be sure to disable interrupts before changing the contents of this register. Unnecessary interrupts may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EK0x. At initial reset, this register is set to "0" (None).

CTK00H-CTK02H: 00FF58H•D4-D6

Sets the input level check time of the chatteringeliminate circuit for the K04–K07 input port interrupts as shown in Table 5.5.5.3.

Table 5.5.5.3 Setting the input level check time

CTK02H	CTK01H	CTK00H	Input level check time [sec]
1	1	1	4/fosc3
1	1	0	2/fosc3
1	0	1	1/fosc3
1	0	0	4096/fosc1
0	1	1	2048/fosc1
0	1	0	512/fosc1
0	0 0		128/fosc1
0	0	0	None

Be sure to disable interrupts before changing the contents of this register. Unnecessary interrupt may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EK0x. At initial reset, this register is set to "0" (None).

PK00, PK01: 00FF20H•D6, D7

Sets the input interrupt priority level. PK00 and PK01 are the interrupt priority registers corresponding to the input interrupts. Table 5.5.5.4 shows the interrupt priority level which can be set by this register.

Table 5.5.5.4 Interrupt priority level sett	ings
---	------

	· · · · · · · · · · · · · · · · · · ·	
PK01	PK00	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

EK00-EK07: 00FF24H

How interrupt generation to the CPU is permitted or prohibited.

When "1" is written:Interrupt permittedWhen "0" is written:Interrupt prohibitedReading:Valid

EK0x is the interrupt enable register which correspond to the input port K0x. Interrupt is permitted in those terminals set to "1" and prohibited in those set to "0". At initial reset, this register is set to "0" (interrupt prohibited).

FK00-FK07: 00FF28H

Indicates the generation state for an input interrupt.

When "1" is read:	Interrupt factor present
When "0" is read:	Interrupt factor not present
When "1" is written: When "0" is written:	e

The interrupt factor flag FK0x corresponds to K0x is set to "1" by the occurrence of an interrupt generation condition.

When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is all reset to "0".

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Input Ports)

5.5.6 Programming notes

(1) When changing the input terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an input port. In particular, special attention should be paid to key scan for key matrix formation. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

(2) Be sure to disable interrupts before changing the contents of the CTK0x register. Unnecessary interrupts may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EK0x.

5.6 Output Ports (R ports)

5.6.1 Configuration of output ports

The S1C88650 is equipped with 26 bits of output ports (R00–R07, R10–R17, R20–R25, R30–R33). Depending on the bus mode setting, the configuration of the output ports may vary as shown in the table below.

Terminal	Bus mode		
reminal	Single chip	Expansion	
R00	Output port R00	Address A0	
R01	Output port R01	Address A1	
R02	Output port R02	Address A2	
R03	Output port R03	Address A3	
R04	Output port R04	Address A4	
R05	Output port R05	Address A5	
R06	Output port R06	Address A6	
R07	Output port R07	Address A7	
R10	Output port R10	Address A8	
R11	Output port R11	Address A9	
R12	Output port R12	Address A10	
R13	Output port R13	Address A11	
R14	Output port R14	Address A12	
R15	Output port R15	Address A13	
R16	Output port R16	Address A14	
R17	Output port R17	Address A15	
R20	Output port R20	Address A16	
R21	Output port R21	Address A17	
R22	Output port R22	Address A18	
R23	Output port R23	Address A19	
R24	Output port R24	RD signal	
R25	Output port R25	WR signal	
R30	Output port R30	Output port R30/CE0 signal	
R31	Output port R31	Output port R31/CE1 signal	
R32	Output port R32	Output port R32/CE2 signal	
R33	Output port R33	Output port R33/BACK signal	

Table 5.6.1.1 Configuration of output ports

Only the configuration of the output ports in single chip mode will be discussed here. With respect to bus control, see "5.2 System Controller and Bus Control".

Figure 5.6.1.1 shows the basic structure of the output ports.

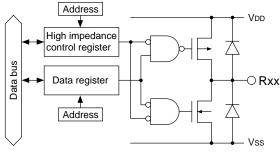


Fig. 5.6.1.1 Structure of output ports

In expansion mode, the data registers and high impedance control registers of the output ports used for bus function can be used as general purpose registers with read/write capabilities. This will not in any way affect bus signal output. The output specification of each output port is as complementary output with high impedance control in software possible.

5.6.2 High impedance control

The output port can be high impedance controlled in software.

This makes it possible to share output signal lines with an other external device.

A high impedance control register is set for each series of output port terminals as shown below. Either complementary output and high impedance state can be selected with this register.

Table 5.6.2.1 High impedance control registers			
Register	Output port terminal		
HZR0L	R00–R03		
HZR0H	R04–R07		
HZR1L	R10–R13		
HZR1H	R14–R17		
HZR20	R20		
HZR21	R21		
HZR22	R22		
HZR23	R23		
HZR24	R24		
HZR25	R25		
HZR30	R30		
HZR31	R31		
HZR32	R32		
HZR33	R33		

Table 5.6.2.1 High impedance control register.

When a high impedance control register HZRxx is set to "1", the corresponding output port terminal becomes high impedance state and when set to "0", it becomes complementary output.

5.6.3 DC output

As Figure 5.6.1.1 shows, when "1" is written to the output port data register, the output terminal switches to HIGH (VDD) level and when "0" is written it switches to LOW (Vss) level. When output is in a high impedance state, the data written to the data register is output from the terminal at the instant when output is switched to complementary.

5.6.4 Control of output ports

Table 5.6.4.1 shows the output port control bits.

Table 5.6.4.1(a) Output port control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF70	D7	-	R/W register	1	0	0	R/W	Reserved register
	D6	-	R/W register	1	0	0	R/W	
	D5	-	R/W register	1	0	0	R/W	
	D4	_	R/W register	1	0	0	R/W	
	D3	HZR1H	R14–R17 high impedance control					
	D2	HZR1L	R10–R13 high impedance control	High	Comple-			
	D1	HZR0H	R04–R07 high impedance control	impedance	mentary	0	R/W	
		HZR0L	R00–R03 high impedance control					
00FF71	D7	_	R/W register	1	0	0	R/W	Reserved register
	D6	_	R/W register	1	0	0	R/W	
	D5	HZR25	R25 high impedance control					
		HZR24	R24 high impedance control					
		HZR23	R23 high impedance control	High	Comple-			
		HZR22	R22 high impedance control	impedance	mentary	0	R/W	
		HZR21	R21 high impedance control	impedance	incinary			
		HZR20	R20 high impedance control					
00FF72	D7	_	R/W register	1	0	0	R/W	Reserved register
001172	D6	_	R/W register	1	0	0	R/W	Reserved register
	D5		R/W register	1	0	0	R/W	
	D3		R/W register	1	0	0	R/W	
		HZR33	R33 high impedance control	1	0		K/ W	
		HZR32		TT:-1	Comula			
		HZR32	R32 high impedance control R31 high impedance control	High	Comple-	0	R/W	
				impedance	mentary			
005572		HZR30	R30 high impedance control					
00FF73		R07D	R07 output port data					
		R06D	R06 output port data					
		R05D	R05 output port data					
		R04D	R04 output port data	High	Low	1	R/W	
		R03D	R03 output port data					
		R02D	R02 output port data					
		R01D	R01 output port data					
		R00D	R00 output port data					
00FF74		R17D	R17 output port data					
		R16D	R16 output port data					
		R15D	R15 output port data					
		R14D	R14 output port data	High	Low	1	R/W	
		R13D	R13 output port data					
		R12D	R12 output port data					
		R11D	R11 output port data					
		R10D	R10 output port data					
00FF75	D7	-	R/W register	1	0	0	R/W	Reserved register
	D6	-	R/W register	1	0	0	R/W	
	D5	R25D	R25 output port data					
	D4	R24D	R24 output port data					
	D3	R23D	R23 output port data	High	Low	1	D /117	
	D2	R22D	R22 output port data	High	Low	1	R/W	
	D1	R21D	R21 output port data					
	D0	R20D	R20 output port data					

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Output Ports)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF76	D7	-	R/W register	1	0	0	R/W	Reserved register
	D6	-	R/W register	1	0	0	R/W	
	D5	-	R/W register	1	0	0	R/W	
	D4	-	R/W register	1	0	0	R/W	
	D3	R33D	R33 output port data					
	D2	R32D	R32 output port data	II h	T	1	R/W	
	D1	R31D	R31 output port data	High	Low	1	K/ W	
	D0	R30D	R30 output port data					

Table 5.6.4.1(b) Output port control bits

HZR0L, HZR0H: 00FF70H•D0, D1 HZR1L, HZR1H: 00FF70H•D2, D3 HZR20-HZR25: 00FF71H•D0-D5 HZR30-HZR33: 00FF72H•D0-D3

Sets the output terminals to a high impedance state.

When "1" is written:	High impedance
When "0" is written:	Complementary
Reading:	Valid

HZRxx is the high impedance control register which correspond as shown in Table 5.6.2.1 to the various output port terminals.

When "1" is set to the HZRxx register, the corresponding output port terminal becomes high impedance state and when "0" is set, it becomes complementary output.

At initial reset, this register is set to "0" (complementary).

R00D-R07D: 00FF73H R10D-R17D: 00FF74H R20D-R25D: 00FF75H•D0-D5 R30D-R33D: 00FF76H•D0-D3

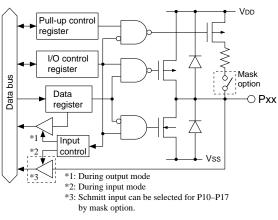
Sets the data output from the output port terminal Rxx.

When "1" is written:	HIGH level output
When "0" is written:	LOW level output
Reading:	Valid

RxxD is the data register for each output port. When "1" is set, the corresponding output port terminal switches to HIGH (VDD) level, and when "0" is set, it switches to LOW (Vss) level. At initial reset, this register is set to "1" (HIGH level output).

The output data registers set for bus signal output can be used as general purpose registers with read/ write capabilities which do not affect the output terminals.

5.7 I/O Ports (P ports)


5.7.1 Configuration of I/O ports

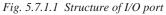

The S1C88650 is equipped with 16 bits of I/O ports (P00–P07, P10–P17). The configuration of these I/O ports will vary according to the bus mode as shown below.

Table 5.7.1.1	Configuration	of I/O	ports
---------------	---------------	--------	-------

Tamainal	Bus mode			
Terminal	Single chip	Expansion		
P00	I/O port P00	Data bus D0		
P01	I/O port P01	Data bus D1		
P02	I/O port P02	Data bus D2		
P03	I/O port P03	Data bus D3		
P04	I/O port P04	Data bus D4		
P05	I/O port P05	Data bus D5		
P06	I/O port P06	Data bus D6		
P07	I/O port P07	Data bus D7		
P10	I/O port P	10 (SIN)		
P11	I/O port P	11 (SOUT)		
P12	I/O port P	12 (SCLK)		
P13	I/O port P	13 (SRDY)		
P14	I/O port P	I/O port P14 (TOUT0/TOUT1)		
P15	I/O port P	15 (TOUT2/TOUT3)		
P16	I/O port P	I/O port P16 (FOUT)		
P17	I/O port P	17 (TOUT2/TOUT3)		

With respect to the data bus, see "5.2 System Controller and Bus Control". Figure 5.7.1.1 shows the structure of an I/O port.

I/O port can be set for input or output mode in one bit unit. These settings are performed by writing data to the I/O control registers.

I/O port terminals P10–P13 are shared with serial interface input/output terminals and the function of each terminal is switchable in software. With respect to serial interface see "5.8 Serial Interface".

The data registers and I/O control registers of I/O ports set for data bus and serial interface output terminals use are usable as general purpose registers with read/write capabilities which do not affect I/O activities of the terminal. The same as above, the I/O control register of I/O port set for serial interface input terminal use is usable as general purpose register.

In addition to the general-purpose DC output, special output can be selected for the I/O ports P14–P17 with the software.

5.7.2 Mask option

I/O port pull-up resistors	
P00 🗆 With resistor	□ Gate direct
P01 🗆 With resistor	\Box Gate direct
P02 🗆 With resistor	□ Gate direct
P03 🗆 With resistor	\Box Gate direct
P04 🗆 With resistor	□ Gate direct
P05 🗆 With resistor	□ Gate direct
P06 With resistor	□ Gate direct
P07 With resistor	□ Gate direct
P10 🗆 With resistor	□ Gate direct
P11 🗆 With resistor	□ Gate direct
P12 🗆 With resistor	□ Gate direct
P13 🗆 With resistor	□ Gate direct
P14 🗆 With resistor	\Box Gate direct
P15 🗆 With resistor	Gate direct
P16 🗆 With resistor	□ Gate direct
P17 🗆 With resistor	□ Gate direct
	.1
I/O port input interface leve	
P10 CMOS level	CMOS Schmitt
P11 CMOS level	□ CMOS Schmitt
P12 CMOS level	□ CMOS Schmitt
P13 🗆 CMOS level	□ CMOS Schmitt
P14 CMOS level	□ CMOS Schmitt
P15 CMOS level	□ CMOS Schmitt
P16 CMOS level	CMOS Schmitt
P17 CMOS level	CMOS Schmitt

I/O ports P00–P07 and P10–P17 are equipped with a pull-up resistor which goes ON in the input mode. Whether this resistor is used or not can be selected for each port (one bit unit). Furthermore, the interface level for each port in P10–P17 can be selected from CMOS level and CMOS Schmitt level.

5.7.3 I/O control registers and I/O mode

I/O ports P00–P07 and P10–P17 are set either to input or output modes by writing data to the I/O control registers IOC00–IOC07 and IOC10–IOC17 which correspond to each bit.

To set an I/O port to input mode, write "0" to the I/O control register.

An I/O port which is set to input mode will shift to a high impedance state and functions as an input port. Readout in input mode consists simply of a direct readout of the input terminal state: the data being "1" when the input terminal is at HIGH (VDD) level and "0" when it is at LOW (VSS) level.

When the built-in pull-up resistor is enabled with the software, the port terminal will be pulled-up to high during input mode.

Even in input mode, data can be written to the data registers without affecting the terminal state. To set an I/O port to output mode, write "1" to the I/O control register. An I/O port which is set to output mode functions as an output port. When port output data is "1", a HIGH (VDD) level is output and when it is "0", a LOW (Vss) level is output. Readout in output mode consists of the contents of the data register.

At initial reset, I/O control registers are set to "0" (I/O ports are set to input mode).

5.7.4 Pull-up control

When "With resistor" is selected by mask option, the software can enable and disable the pull-up resistor for each port (1-bit units).

The pull-up resistor becomes effective by writing "1" to the pull-up control register PULPxx that corresponds to each port, and the Pxx terminal is pulled up during the input mode. When "0" has been written, no pull-up is done. When "Gate direct" is selected by mask option, the corresponding pull-up control register is disconnected from the input line, so it can be used as a general-purpose register. When the port is set in the output mode, the setting of the pull-up control register becomes invalid (no pull-up is done during output).

At initial reset, the pull-up control registers are set to "1" (pulled up).

When changing the port terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

For unused ports, select "With resistor" and enable pull-up using the pull-up control registers.

5.7.5 Special output

Besides general purpose DC input/output, I/O ports P14–P17 can also be assigned special output functions in software as shown in Table 5.7.5.1.

Table 5.7.5.1 Special output ports

Output port	Special output
P14	TOUT0/TOUT1 output
P15	TOUT2/TOUT3 output
P16	FOUT output
P17	TOUT2/TOUT3 output

When using P14–P17 as a special output port, write "1" to the corresponding I/O control register (IOC14–IOC17) to set the port to the output mode.

■ TOUT output (P14, P15)

In order for the S1C88650 to provide clock signal to an external device, the terminals P14 and P15 can be used to output a TOUTx signal (clock output by the programmable timer).

The output control for the TOUTx signals (x = 0-3) is done by the registers PTOUTx. When PTOUTx is set to "1", the TOUTx signal is output from the corresponding port terminal, when "0" is set, the port is set for DC output. When PTOUTx is "1", settings of the I/O control register IOC14/IOC15 and data register P14D/P15D become invalid. The TOUT0-TOUT3 signals are generated from the underflow and compare-match signals of the programmable timers 0–3.

With respect to frequency control, see "5.10 Programmable Timer".

Since the TOUTx signals are generated asynchronously from the registers PTOUTx, when the signals are turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated. Figure 5.7.5.1 shows the output waveform of the TOUT signal.

Fig. 5.7.5.1 Output waveform of TOUT signal

Note: If PTOUT0 and PTOUT1 are set to "1" at the same time, PTOUT1 is effective. Similarly, if PTOUT2 and PTOUT3 are set to "1", PTOUT3 is effective.

■ FOUT output (P16)

In order for the S1C88650 to provide clock signal to an external device, a FOUT signal (oscillation clock fOSC1 or fOSC3 dividing clock) can be output from the P16 port terminal.

The output control for the FOUT signal is done by the register FOUTON. When FOUTON is set to "1", the FOUT signal is output from the P16 port terminal, when "0" is set, the port is set for DC output. When FOUTON is "1", settings of the I/O control register IOC16 and data register P16D become invalid.

The frequency of the FOUT signal can be selected in software by setting the registers FOUT0–FOUT2. The frequency is selected any one from among eight settings as shown in Table 5.7.5.2.

10	Table 5.7.5.2 FOOT frequency setting							
FOUT2	FOUT1	FOUT0	FOUT frequency					
1	1	1	fosc3 / 8					
1	1	0	fosc3 / 4					
1	0	1	fosc3 / 2					
1	0	0	fosc3 / 1					
0	1	1	fosc1 / 8					
0	1	0	fosc1 / 4					
0	0	1	fosc1 / 2					
0	0	0	fosc1 / 1					

 Table 5.7.5.2 FOUT frequency setting

fOSC1: OSC1 oscillation frequency fOSC3: OSC3 oscillation frequency

When the FOUT frequency is made " $fosc_3/n$ ", you must turn on the OSC3 oscillation circuit before outputting FOUT. A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before turning outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 8, "ELECTRICAL CHARACTERISTICS".)

Since the FOUT signal is generated asynchronously from the register FOUTON, when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

Figure 5.7.5.2 shows the output waveform of the FOUT signal.

Fig. 5.7.5.2 Output waveform of FOUT signal

Inverted TOUT output (P17)

The S1C88650 provides an output of the TOUT2 or TOUT3 inverted signal (programmable timer output clock) to supply a clock to external devices or to drive a buzzer.

By using this output with the TOUT2 or TOUT3 output from the P15 terminal, the bias level to be applied to the buzzer can be increased.

The output control for the TOUTx signals (x = 2 or 3) is done by the registers RPTOUTx. When RPTOUTx is set to "1", the TOUTx signal is output from the P17 port terminal, when "0" is set, the port is set for DC output. When RPTOUTx is "1", settings of the I/O control register IOC17 and data register P17D become invalid.

The TOUT2 and TOUT3 signals are generated from the underflow and compare-match signals of the programmable timers 2 and 3.

With respect to frequency control, see "5.10 Programmable Timer".

Since the TOUTx signals are generated asynchronously from the registers RPTOUTx, when the signals are turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated. Figure 5.7.5.3 shows the output waveform of the TOUT signal.

Fig. 5.7.5.3 Output waveform of \overline{TOUT} signal

Note: If RPTOUT2 and RPTOUT3 are set to "1" at the same time, RPTOUT3 is effective.

5.7.6 Control of I/O ports

Table 5.7.6.1 shows the I/O port control bits.

Table 5.7.6.1(a) I/O port control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF60	D7	IOC07	P07 I/O control register					
	D6	IOC06	P06 I/O control register					
	D5	IOC05	P05 I/O control register					
	D4	IOC04	P04 I/O control register				DAV	
	D3	IOC03	P03 I/O control register	Output	Input	0	R/W	
	D2	IOC02	P02 I/O control register	1				
	D1	IOC01	P01 I/O control register	1				
	D0	10C00	P00 I/O control register					
00FF61	D7	IOC17	P17 I/O control register					
	D6	IOC16	P16 I/O control register	1				
	D5	IOC15	P15 I/O control register					
	D4	IOC14	P14 I/O control register		_			
	D3	IOC13	P13 I/O control register	Output	Input	0	R/W	
	D2	IOC12	P12 I/O control register					
	D1	IOC11	P11 I/O control register					
	D0	IOC10	P10 I/O control register					
00FF62	D7	P07D	P07 I/O port data					
	D6	P06D	P06 I/O port data					
	D5	P05D	P05 I/O port data					
	D4	P04D	P04 I/O port data				DAV	
	D3	P03D	P03 I/O port data	High	Low	1	R/W	
	D2	P02D	P02 I/O port data	1				
	D1	P01D	P01 I/O port data					
	D0	P00D	P00 I/O port data	1				
00FF63	D7	P17D	P17 I/O port data					
	D6	P16D	P16 I/O port data	1				
	D5	P15D	P15 I/O port data	1				
	D4	P14D	P14 I/O port data		Ţ	1	DAV	
	D3	P13D	P13 I/O port data	High	Low	1	R/W	
	D2	P12D	P12 I/O port data	1				
	D1	P11D	P11 I/O port data	1				
	D0	P10D	P10 I/O port data	1				
00FF64	D7	PULP07	P07 pull-up control register					
	D6	PULP06	P06 pull-up control register					
	D5	PULP05	P05 pull-up control register					
	D4	PULP04	P04 pull-up control register	0	04	1	R/W	
	D3	PULP03	P03 pull-up control register	On	Off	1	K/W	
	D2	PULP02	P02 pull-up control register					
			P01 pull-up control register					
			P00 pull-up control register					
00FF65			P17 pull-up control register					
	D6	PULP16	P16 pull-up control register					
	D5	PULP15	P15 pull-up control register					
	D4	PULP14	P14 pull-up control register	On	Off	1	R/W	
	D3	PULP13	P13 pull-up control register				IX/ W	
	D2	PULP12	P12 pull-up control register					
	D1	PULP11	P11 pull-up control register					
	D0	PULP10	P10 pull-up control register					

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (I/O Ports)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF30			PTM0–1 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
			External clock 0 noise rejecter selection	Enable	Disable	0	R/W	-
	D5	_	_	_	_	_		"0" when being read
	D4	_	R/W register	1	0	0	R/W	Reserved register
		PTOUT0	PTM0 clock output control	On	Off	0	R/W	
			PTM0 Run/Stop control	Run	Stop	0	R/W	-
		PSET0	PTM0 preset	Preset	No operation	0	W	"0" when being read
			PTM0 input clock selection		Internal clock	0	R/W	
00FF31	D7	_		_	_	_		Constantly "0" when
	D6	_	_	_	_	_		being read
	D5	_	_	_	_	_		
	D4	_	R/W register	1	0	0	R/W	Reserved register
	D3	PTOUT1	PTM1 clock output control	On	Off	0	R/W	
			PTM1 Run/Stop control	Run	Stop	0	R/W	
		PSET1	PTM1 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL1	PTM1 input clock selection	External clock	Internal clock	0	R/W	
00FF38			PTM2–3 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_B	External clock 1 noise rejecter selection	Enable	Disable	0	R/W	
	D5	_	-	-	-	_		"0" when being read
	D4	RPTOUT2	PTM2 inverted clock output control	On	Off	0	R/W	
			PTM2 clock output control	On	Off	0	R/W	1
	D2	PTRUN2	PTM2 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET2	PTM2 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL2	PTM2 input clock selection	External clock	Internal clock	0	R/W	
00FF39	D7	-	_	-	-	-		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	-	_	-	-	-		
	D4	RPTOUT3	PTM3 inverted clock output control	On	Off	0	R/W	
	D3	PTOUT3	PTM3 clock output control	On	Off	0	R/W	
	D2	PTRUN3	PTM3 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET3	PTM3 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL3	PTM3 input clock selection	External clock	Internal clock	0	R/W	
00FF40	D7	WDEN	Watchdog timer enable	Enable	Disable	1	R/W	
	D6	FOUT2	FOUT frequency selection			0	R/W	
			FOUT2 FOUT1 FOUT0 Frequency					
			1 1 1 fosc3 / 8					
	D5	FOUT1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
			1 0 1 105C3 / 2 1 0 0 fosc3 / 1					
			0 1 1 fosc1/8					
	D4	FOUT0	0 1 0 fosc1 / 4			0	R/W	
			0 0 1 fosc1/2					
			0 0 0 fosci / 1					
			FOUT output control	On	Off	0	R/W	
	D2 WDRST Watchdog timer reset		Reset	No operation	-	W	Constantly "0" when	
		TMRST	Clock timer reset	Reset	No operation	-	W	being read
	D0	TMRUN	Clock timer Run/Stop control	Run	Stop	0	R/W	

Table 5.7.6.1(b) I/O port control bits

DC output control

P00D–P07D: 00FF62H P10D–P17D: 00FF63H

How I/O port terminal Pxx data readout and output data settings are performed.

When writing data:

When "1" is written: HIGH level When "0" is written: LOW level

When the I/O port is set to output mode, the data written is output as is to the I/O port terminal. In terms of port data, when "1" is written, the port terminal goes to HIGH (VDD) level and when "0" is written to a LOW (VSS) level.

Even when the port is in input mode, data can still be written in.

When reading out data:

When "1" is read:	HIGH level ("1")
When "0" is read:	LOW level ("0")

When an I/O port is in input mode, the voltage level being input to the port terminal is read out. When terminal voltage is HIGH (VDD), it is read as a "1", and when it is LOW (Vss), it is read as a "0". Furthermore, in output mode, the contents of the data register are read out.

At initial reset, this register is set to "1" (HIGH level).

Note: The data registers of the ports that are configured to the data bus, serial interface outputs and special outputs can be used as general purpose registers that do not affect the terminal inputs/outputs.

IOC00–IOC07: 00FF60H IOC10–IOC17: 00FF61H

Sets the I/O ports to input or output mode.

When "1" is written:	Output mode
When "0" is written:	Input mode
Reading:	Valid

IOCxx is the I/O control register which correspond to each I/O port in a bit unit.

Writing "1" to the IOCxx register will switch the corresponding I/O port Pxx to output mode, and writing "0" will switch it to input mode. When the special output is used, "1" must always be set for the I/O control registers (IOC14-IOC17) of I/O ports which will become output terminals. At initial reset, this register is set to "0" (input mode).

Note: The I/O control registers of the ports that are configured to the data bus, serial interface inputs/outputs and special outputs can be used as general purpose registers that do not affect the terminal inputs/outputs.

PULP00–PULP07: 00FF64H PULP10–PULP17: 00FF65H

The pull-up during the input mode are set with these registers.

When "1" is written:Pull-up ONWhen "0" is written:Pull-up OFFReading:Valid

PULPxx is the pull-up control register corresponding to each I/O port (in bit units). When "Gate direct" is selected by mask option, the corresponding pull-up control register is disconnected from the input line, so it can be used as a general-purpose register.

By writing "1" to the PULPxx register, the corresponding I/O ports are pulled up (during input mode), while writing "0" turns the pull-up function OFF.

At initial reset, these registers are all set to "1", so the pull-up function is set to ON.

Note: The pull-up control registers of the ports that are configured to the serial interface outputs or special outputs can be used as general purpose registers that do not affect the pullup control. The pull-up control registers of the port that are configured to the serial interface inputs function the same as the I/O port.

Special output control

PTOUT0: 00FF30H•D3 PTOUT1: 00FF31H•D3 PTOUT2: 00FF38H•D3 PTOUT3: 00FF39H•D3

Controls the TOUT (programmable timer output clock) signal output.

When "1" is written:TOUT signal outputWhen "0" is written:DC outputReading:Valid

PTOUT0-PTOUT3 are the output control registers for the TOUT0-TOUT3 signals. When PTOUT0 (or PTOUT1) is set to "1", the TOUT0 (or TOUT1) signal is output from the P14 port terminal. When PTOUT2 (or PTOUT3) is set to "1", the TOUT2 (or TOUT3) signal is output from the P15 port terminal. When "0" is set, P14/P15 is set for DC output. At this time, settings of the I/O control register IOC14/IOC15 and data register P14D/P15D become invalid.

At initial reset, PTOUT is set to "0" (DC output).

Note: If PTOUT0 and PTOUT1 are set to "1" at the same time, PTOUT1 is effective. Similarly, if PTOUT2 and PTOUT3 are set to "1", PTOUT3 is effective. Furthermore, if the programmable timer is set in 16-bit mode, the TOUT0 and TOUT2 signals cannot be output.

RPTOUT2: 00FF38H•D4 RPTOUT3: 00FF39H•D4

Controls the TOUT2/TOUT3 (inverted TOUT2/ TOUT3) signal output.

When "1" is written:TOUT signal outputWhen "0" is written:DC outputReading:Valid

RPTOUT2 and RPTOUT3 are the output control registers for the TOUT2 and TOUT3 signals, respectively. When RPTOUT2 (or RPTOUT3) is set to "1", the TOUT2 (or TOUT3) signal is output from the P17 port terminal. When "0" is set, P17 is set for DC output.

At this time, settings of the I/O control register IOC17 and data register P17D become invalid. At initial reset, RPTOUT is set to "0" (DC output).

Note: If RPTOUT2 and RPTOUT3 are set to "1" at the same time, RPTOUT3 is effective. Furthermore, if the programmable timer is set in 16-bit mode, the TOUT2 signal cannot be output.

FOUTON: 00FF40H•D3

Controls the FOUT (fosc1/fosc3 dividing clock) signal output.

When "1" is written:FOUT signal outputWhen "0" is written:DC outputReading:Valid

FOUTON is the output control register for FOUT signal. When "1" is set, the FOUT signal is output from the P16 port terminal and when "0" is set, P16 is set for DC output. At this time, settings of the I/O control register IOC16 and data register P16D become invalid.

At initial reset, FOUTON is set to "0" (DC output).

FOUT0-FOUT2: 00FF40H•D4-D6

FOUT signal frequency is set as shown in Table 5.7.6.2.

Tal	Table 5.7.6.2 FOUT frequency settings							
FOUT2	FOUT1	FOUT0	FOUT frequency					
1	1	1	fosc3 / 8					
1	1	0	fosc3 / 4					
1	0	1	fosc3 / 2					
1	0	0	fosc3 / 1					
0	1	1	fosc1 / 8					
0	1	0	fosc1 / 4					
0	0	1	fosc1 / 2					
0	0	0	fosc1 / 1					

Table 5.7.6.2 FOUT frequency settings

fosc1: OSC1 oscillation frequency fosc3: OSC3 oscillation frequency

At initial reset, this register is set to "0" (fosc1/1).

5.7.7 Programming notes

(1) When changing the port terminal in which the pull-up resistor is enabled from LOW level to HIGH, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

- (2) Since the special output signals (TOUT0-3, TOUT2-3, and FOUT) are generated asynchronously from the output control registers (PTOUT0-3, RPTOUT2-3, and FOUTON), when the signals is turned ON or OFF by the output control register settings, a hazard of a 1/2 cycle or less is generated.
- (3) When the FOUT frequency is made " $fosc_3/n$ ", you must turn on the OSC3 oscillation circuit before outputting FOUT. A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before turning outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 8, "ELECTRICAL CHARACTERISTICS".)
- (4) The SLP instruction has executed when the special output signals (TOUT0-3, TOUT2-3, and FOUT) are in the enable status, an unstable clock is output for the special output at the time of return from the SLEEP state. Consequently, when shifting to the SLEEP state, you should set the special output signal to the disable status prior to executing the SLP instruction.

5.8 Serial Interface

5.8.1 Configuration of serial interface

The S1C88650 incorporates a full duplex serial interface (when asynchronous system is selected) that allows the user to select either clock synchronous system or asynchronous system.

The data transfer method can be selected in software.

When the clock synchronous system is selected, 8bit data transfer is possible.

When the asynchronous system is selected, either 7bit or 8-bit data transfer is possible, and a parity check of received data and the addition of a parity bit for transmitting data can automatically be done by selecting in software.

Figure 5.8.1.1 shows the configuration of the serial interface.

5.8.2 Switching of terminal functions

Serial interface input/output terminals, SIN, SOUT, SCLK and SRDY are shared with I/O ports P10– P13. In order to utilize these terminals for the serial interface input/output terminals, "1" must be written to the ESIF register.

At initial reset, these terminals are set as I/O port terminals.

The direction of I/O port terminals set for serial interface input/output terminals are determined by the signal and transfer mode for each terminal. Furthermore, the settings for the corresponding I/O control registers for the I/O ports become invalid.

Terminal	When serial interface is selected
P10	SIN
P11	SOUT
P12	SCLK
P13	SRDY

* The terminals used may vary depending on the transfer mode.

Fig. 5.8.1.1 Configuration of serial interface

The serial interface terminals are configured according to the transfer mode set using the registers SMD0 and SMD1. SIN and SOUT are serial data input and output terminals which function identically in clock synchronous system and asynchronous system. SCLK is exclusively for use with clock synchronous system and functions as a synchronous clock input/output terminal. SRDY is exclusively for use in clock synchronous slave mode and functions as a send-receive ready signal output terminal.

When asynchronous system is selected, since SCLK and SRDY are superfluous, the I/O port terminals P12 and P13 can be used as I/O ports.

In the same way, when clock synchronous master mode is selected, since $\overline{\text{SRDY}}$ is superfluous, the I/O port terminal P13 can be used as I/O port.

5.8.3 Transfer modes

There are four transfer modes for the serial interface and mode selection is made by setting the two bits of the mode selection registers SMD0 and SMD1 as shown in the table below.

	Tuble 5.6.5.1 Transfer moues					
SMD1 SMD0 Mode						
1	1	Asynchronous 8-bit				
1	0	Asynchronous 7-bit				
0	1	Clock synchronous slave				
0	0	Clock synchronous master				

Table 5.8.3.1 Transfer modes

Table 5.8.3.2	Terminal settings corresponding
	to each transfer mode

Mode	SIN	SOUT	SCLK	SRDY
Asynchronous 8-bit	Input	Output	P12	P13
Asynchronous 7-bit	Input	Output	P12	P13
Clock synchronous slave	Input	Output	Input	Output
Clock synchronous master	Input	Output	Output	P13

At initial reset, transfer mode is set to clock synchronous master mode.

■ Clock synchronous master mode

In this mode, the internal clock is utilized as a synchronous clock for the built-in shift registers, and clock synchronous 8-bit serial transfers can be performed with this serial interface as the master. The synchronous clock is also output from the SCLK terminal which enables control of the external (slave side) serial I/O device. Since the SRDY terminal is not utilized in this mode, it can be used as an I/O port.

Figure 5.8.3.1(a) shows the connection example of input/output terminals in the clock synchronous master mode.

Clock synchronous slave mode

In this mode, a synchronous clock from the external (master side) serial input/output device is utilized and clock synchronous 8-bit serial transfers can be performed with this serial interface as the slave. The synchronous clock is input to the SCLK terminal and is utilized by this interface as the synchronous clock.

Furthermore, the SRDY signal indicating the transmit-receive ready status is output from the SRDY terminal in accordance with the serial interface operating status.

In the slave mode, the settings for registers SCS0 and SCS1 used to select the clock source are invalid. Figure 5.8.3.1(b) shows the connection example of input/output terminals in the clock synchronous slave mode.

Asynchronous 7-bit mode

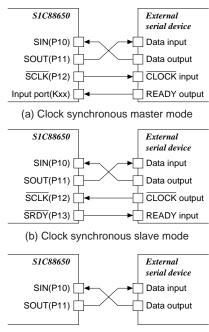
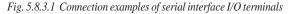

In this mode, asynchronous 7-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 7 bits with or without parity. Since this mode employs the internal clock, the SCLK terminal is not used. Furthermore, since the SRDY terminal is not utilized either, both of these terminals can be used as I/O ports.

Figure 5.8.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.


Asynchronous 8-bit mode

In this mode, asynchronous 8-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 8 bits with or without parity. Since this mode employs the internal clock, the <u>SCLK</u> terminal is not used. Furthermore, since the <u>SRDY</u> terminal is not utilized either, both of these terminals can be used as I/O ports.

Figure 5.8.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.

5.8.4 Clock source

There are four clock sources and selection is made by setting the two bits of the clock source selection register SCS0 and SCS1 as shown in table below.

Table	5.8.4.1	Clock	source	

SCS1	SCS0	Clock source	
1	1	Programmable timer	
1	0	fosc3 / 4	
0	1	fosc3 / 8	
0	0	fosc3 / 16	

This register setting is invalid in clock synchronous slave mode and the external clock input from the SCLK terminal is used.

When the "programmable timer" is selected, the programmable timer 1 underflow signal is divided by 2 and this signal is used as the clock source. With respect to the transfer rate setting, see "5.10 Programmable Timer".

At initial reset, the synchronous clock is set to "fosc3/16".

Whichever clock is selected, the signal is further divided by 16 and then used as the synchronous clock.

Furthermore, external clock input is used as is for SCLK in clock synchronous slave mode.

Table 5.8.4.2 shows an examples of transfer rates and OSC3 oscillation frequencies when the clock source is set to programmable timer.

When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 8, "ELECTRICAL CHARACTERISTICS".) At initial reset, the OSC3 oscillation circuit is set to ON status.

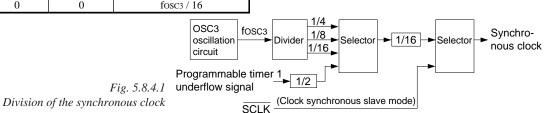


Table 5.8.4.2 OSC3 oscillation frequencies and transfer rates

Transfer rate	OSC3 oscillation frequency / Programmable timer settings								
	fosc3 = 2.4	4756 MHz	fosc3 = 3.0720 MHz		fosc3 = 3.6864 MHz				
(bps)	PST1X	RDR1X	PST1X	RDR1X	PST1X	RDR1X			
19,200	00H	03H	00H	04H	00H	05H			
9,600	00H	07H	00H	09H	00H	0BH			
4,800	00H	0FH	00H	13H	00H	17H			
2,400	00H	1FH	00H	27H	00H	2FH			
1,200	00H	3FH	00H	4FH	00H	5FH			
600	00H	7FH	00H	9FH	00H	BFH			
300	02H	1FH	03H	09H	01H	BFH			
150	02H	3FH	03H	13H	02H	5FH			

* Since the underflow signal only is used as the clock source, the CDR1X register value does not affect the transfer rates.

5.8.5 Transmit-receive control

Below is a description of the registers which handle transmit-receive control. With respect to transmitreceive control procedures and operations, please refer to the following sections in which these are discussed on a mode by mode basis.

Shift register and received data buffer

Exclusive shift registers for transmitting and receiving are installed in this serial interface. Consequently, duplex communication simultaneous transmit and receive is possible when the asynchronous system is selected.

Data being transmitted are written to TRXD0– TRXD7 and converted to serial through the shift register and is output from the SOUT terminal.

In the reception section, a received data buffer is installed separate from the shift register. Data being received are input to the SIN terminal and is converted to parallel through the shift register and written to the received data buffer. Since the received data buffer can be read even during serial input operation, the continuous data is received efficiently.

However, since buffer functions are not used in clock synchronous mode, be sure to read out data before the next data reception begins.

Transmit enable register and transmit control bit

For transmitting control, use the transmit enable register TXEN and transmit control bit TXTRG.

The transmit enable register TXEN is used to set the transmitting enable/disable status. When "1" is written to this register to set the transmitting enable status, clock input to the shift register is enabled and the system is ready to transmit data. In the clock synchronous mode, synchronous clock input/output from the \overline{SCLK} terminal is also enabled.

The transmit control bit TXTRG is used as the trigger to start transmitting data.

Data to be transmitted is written to the transmit data shift register, and when transmitting preparations a recomplete, "1" is written to TXTRG whereupon data transmitting begins.

When interrupt has been enabled, an interrupt is generated when the transmission is completed. If there is subsequent data to be transmitted it can be sent using this interrupt. In addition, TXTRG can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop. For details on timing, see the timing chart which gives the timing for each mode.

When not transmitting, set TXEN to "0" to disable transmitting status.

Receive enable register, receive control bit

For receiving control, use the receive enable register RXEN and receive control bit RXTRG.

Receive enable register RXEN is used to set receiving enable/disable status. When "1" is written into this register to set the receiving enable status, clock input to the shift register is enabled and the system is ready to receive data. In the clock synchronous mode, synchronous clock input/output from the SCLK terminal is also enabled.

With the above setting, receiving begins and serial data input from the SIN terminal goes to the shift register.

The operation of the receive control bit RXTRG is slightly different depending on whether a clock synchronous system or an asynchronous system is being used.

In the clock synchronous system, the receive control bit RXTRG is used as the trigger to start receiving data.

When received data has been read and the preparation for next data receiving is completed, write "1" into RXTRG to start receiving. (When "1" is written to RXTRG in slave mode, SRDY switches to "0".) In an asynchronous system, RXTRG is used to prepare for next data receiving. After reading the received data from the received data buffer, write "1" into RXTRG to signify that the received data buffer is empty. If "1" is not written into RXTRG, the overrun error flag OER will be set to "1" when the next receiving operation is completed. (An overrun error will be generated when receiving is completed between reading the received data and the writing of "1" to RXTRG.)

In addition, RXTRG can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRG is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped.

For details on timing, see the timing chart which gives the timing for each mode.

When you do not receive, set RXEN to "0" to disable receiving status.

5.8.6 Operation of clock synchronous transfer

Clock synchronous transfer involves the transfer of 8-bit data by synchronizing it to eight clocks. The same synchronous clock is used by both the transmitting and receiving sides.

When the serial interface is used in the master mode, the clock signal selected using SCS0 and SCS1 is further divided by 1/16 and employed as the synchronous clock. This signal is then sent via the SCLK terminal to the slave side (external serial I/O device).

When used in the slave mode, the clock input to the $\overline{\text{SCLK}}$ terminal from the master side (external serial input/output device) is used as the synchronous clock.

In the clock synchronous mode, since one clock line (SCLK) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.)

The transfer data length is fixed at 8 bits. Data can be switched using a register whether it is transmitted/received from LSB (bit 0) or MSB (bit 7).

Fig. 5.8.6.1 Transfer data configuration using clock synchronous mode

Below is a description of initialization when performing clock synchronous transfer, transmitreceive control procedures and operations. With respect to serial interface interrupt, see "5.8.8 Interrupt function".

Initialization of serial interface

When performing clock synchronous transfer, the following initial settings must be made.

(1) Setting of transmitting/receiving disable To set the serial interface into a status in which both transmitting and receiving are disabled, "0" must be written to both the transmit enable register TXEN and the receive enable register RXEN. Fix these two registers to a disable status until data transfer actually begins. (2) Port selection

Because serial interface input/output ports SIN, SOUT, <u>SCLK</u> and <u>SRDY</u> are set as I/O port terminals P10–P13 at initial reset, "1" must be written to the serial interface enable register ESIF in order to set these terminals for serial interface use.

(3) Setting of transfer mode

Select the clock synchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMD0 and SMD1.

Master mode:	SMD0 = "0", SMD1 = "0"
Slave mode:	SMD0 = "1", SMD1 = "0"

(4) Clock source selection

In the master mode, select the synchronous clock source by writing data to the two bits of the clock source selection registers SCS0 and SCS1. (See Table 5.8.4.1.) This selection is not necessary in the slave mode.

Since all the registers mentioned in (2)–(4) are assigned to the same address, it's possible to set them all with one instruction. The parity enable register EPR is also assigned to this address, however, since parity is not necessary in the clock synchronous mode, parity check will not take place regardless of how they are set.

(5) Clock source control

When the master mode is selected and programmable timer for the clock source is selected, set transfer rate on the programmable timer side. (See "5.10 Programmable Timer".) When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See "5.4 Oscillation Circuits".)

(6) Serial data input/output permutation The S1C88650 provides the data input/output permutation select register SDP to select whether the serial data bits are transfered from the LSB or MSB. The SDP register should be set before writing data to TRXD0-TRXD7.

Data transmit procedure

The control procedure and operation during transmitting is as follows.

- Write "0" in the transmit enable register TXEN and the receive enable register RXEN to reset the serial interface.
- (2) Write "1" in the transmit enable register TXEN to set into the transmitting enable status.
- (3) Write the transmitting data into TRXD0– TRXD7.
- (4) In case of the master mode, confirm the receive ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the receive ready status.
- (5) Write "1" in the transmit control bit TXTRG and start transmitting.

In the master mode, this control causes the synchronous clock to change to enable and to be provided to the shift register for transmitting and output from the SCLK terminal. In the slave mode, it waits for the synchronous clock to be input from the SCLK terminal. The transmitting data of the shift register shifts one bit at a time at each falling edge of the synchronous clock and is output from the SOUT terminal. When the final bit (MSB when "LSB first" is selected, or LSB when "MSB first" is selected) is output, the SOUTx terminal is maintained at that level, until the next transmitting begins.

The transmitting complete interrupt factor flag FSTRA is set to "1" at the point where the data transmitting of the shift register is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point.

Set the following transmitting data using this interrupt.

(6) Repeat steps (3) to (5) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXEN, when the transmitting is completed.

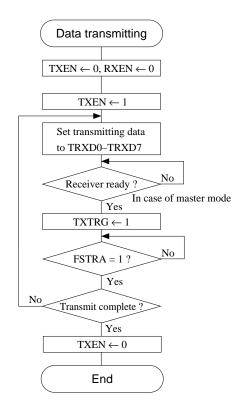


Fig. 5.8.6.2 Transmit procedure in clock synchronous mode

Data receive procedure

The control procedure and operation during receiving is as follows.

- Write "0" in the receive enable register RXEN and transmit enable register TXEN to reset the serial interface.
- (2) Write "1" in the receive enable register RXEN to set into the receiving enable status.
- (3) In case of the master mode, confirm the transmit ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the transmit ready status.
- (4) Write "1" in the receive control bit RXTRG and start receiving.

In the master mode, this control causes the synchronous clock to change to enable and is provided to the shift register for receiving and output from the \overline{SCLK} terminal. In the slave mode, it waits for the synchronous clock to be input from the \overline{SCLK} terminal. The received data input from the SIN terminal is successively incorporated into the shift register in synchronization with the rising edge of the synchronous clock.

At the point where the data of the 8th bit has been incorporated at the final (8th) rising edge of the synchronous clock, the content of the shift register is sent to the received data buffer and the receiving complete interrupt factor flag FSREC is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point.

- (5) Read the received data from TRXD0–TRXD7 using receiving complete interrupt.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXEN, when the receiving is completed.

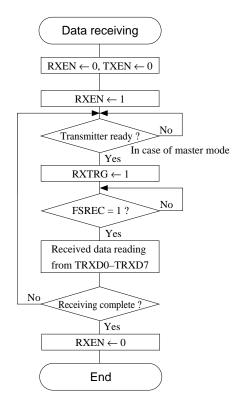


Fig. 5.8.6.3 Receiving procedure in clock synchronous mode

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Serial Interface)

■ Transmit/receive ready (SRDY) signal When this serial interface is used in the clock synchronous slave mode (external clock input), an SRDY signal is output to indicate whether or not this serial interface can transmit/receive to the master side (external serial input/output device). This signal is output from the SRDY terminal and when this interface enters the transmit or receive enable (READY) status, it becomes "0" (LOW level) and becomes "1" (HIGH level) when there is a BUSY status, such as during transmit/receive operation. The SRDY signal changes the "1" to "0," immediately after writing "1" into the transmit control bit TXTRG or the receive control bit RXTRG and returns from "0" to "1", at the point where the first synchronous clock has been input (falling edge). When you have set in the master mode, control the transfer by inputting the same signal from the slave side using the input port or I/O port. At this time, since the SRDY terminal is not set and instead P13 functions as the I/O port, you can apply this port for said control.

Timing chart

The timing chart for the clock synchronous system transmission is shown in Figure 5.8.6.4.

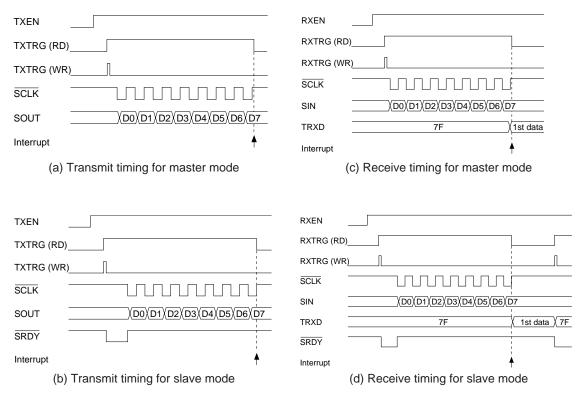


Fig. 5.8.6.4 Timing chart (clock synchronous system transmission, LSB first)

5.8.7 Operation of asynchronous transfer

Asynchronous transfer is a mode that transfers by adding a start bit and a stop bit to the front and the back of each piece of serial converted data. In this mode, there is no need to use a clock that is fully synchronized clock on the transmit side and the receive side, but rather transmission is done while adopting the synchronization at the start/stop bits that have attached before and after each piece of data. The RS-232C interface functions can be easily realized by selecting this transfer mode. This interface has separate transmit and receive shift registers and is designed to permit full duplex transmission to be done simultaneously for transmitting and receiving.

For transfer data in the asynchronous 7-bit mode, either 7 bits data (no parity) or 7 bits data + parity bit can be selected. In the asynchronous 8-bit mode, either 8 bits data (no parity) or 8 bits data + parity bit can be selected.

Parity can be even or odd, and parity checking of received data and adding a party bit to transmitting data will be done automatically. Thereafter, it is not necessary to be conscious of parity itself in the program.

The start bit length is fixed at 1 bit. For the stop bit length, either 1 bit or 2 bits can be selected using the stop bit select register STPB. Whether data is transmitted/received from LSB (bit 0) or MSB (bit 7) it can be switched using the data input/output permutation select register SDP.

LSB first	
Sampling clock	
7bit data	s1 D0 D1 D2 D3 D4 D5 D6 s2
7bit data +parity	s1 D0 D1 D2 D3 D4 D5 D6 p s2
8bit data	s1 D0 D1 D2 D3 D4 D5 D6 D7 s2
8bit data +parity	s1 D0 D1 D2 D3 D4 D5 D6 D7 p s2
MSB first	
Sampling clock	
7bit data	s1 D6 D5 D4 D3 D2 D1 D0 s2
7bit data +parity	s1 D6 D5 D4 D3 D2 D1 D0 p s2
8bit data	s1 D7 D6 D5 D4 D3 D2 D1 D0 s2
8bit data +parity	s1 D7 D6 D5 D4 D3 D2 D1 D0 p s2
	s1 : Start bit (Low level, 1 bit)

- s2: Stop bit (High level, 1 bit or 2 bits) p: Parity bit
- Fig. 5.8.7.1 Transfer data configuration for asynchronous system

Here following, we will explain the control sequence and operation for initialization and transmitting / receiving in case of asynchronous data transfer. See "5.8.8 Interrupt function" for the serial interface interrupts.

Initialization of serial interface

The below initialization must be done in cases of asynchronous system transfer.

- (1) Setting of transmitting/receiving disable To set the serial interface into a status in which both transmitting and receiving are disabled, "0" must be written to both the transmit enable register TXEN and the receive enable register RXEN. Fix these two registers to a disable status until data transfer actually begins.
- (2) Port selection

Because serial interface input/output terminals SIN and SOUT are set as I/O port terminals P10 and P11 at initial reset, "1" must be written to the serial interface enable register ESIF in order to set these terminals for serial interface use. SCLK and SRDY terminals set in the clock synchronous mode are not used in the asynchronous mode. These terminals function as I/O port terminals P12 and P13.

(3) Setting of transfer mode

Select the asynchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMD0 and SMD1.

7-bit mode:	SMD0 = "0", SMD1 = "1"
8-bit mode:	SMD0 = "1", SMD1 = "1"

(4) Parity bit selection

When checking and adding parity bits, write "1" into the parity enable register EPR to set to "with parity check". As a result of this setting, in the asynchronous 7-bit mode, it has a 7 bits data + parity bit configuration and in the asynchronous 8-bit mode it has an 8 bits data + parity bit configuration. In this case, parity checking for receiving and adding a party bit for transmitting is done automatically in hardware. Moreover, when "with parity check" has been selected, "odd" or "even" parity must be further selected in the parity mode selection register PMD. When "0" is written to the PMD register to select "without parity check" in the asynchronous 7-bit mode, data configuration is set to 7 bits data (no parity) and in the asynchronous 8-bit mode (no parity) it is set to 8 bits data (no parity) and parity checking and parity bit adding will not be done.

(5) Clock source selection

Select the clock source by writing data to the two bits of the clock source selection registers SCS0 and SCS1. (See Table 5.8.4.1.)

Since all the registers mentioned in (2)–(5) are assigned to the same address, it's possible to set them all with one instruction.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Serial Interface)

(6) Clock source control

When the programmable timer is selected for the clock source, set transfer rate on the programmable timer side. (See "5.10 Programmable Timer".)

When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See "5.4 Oscillation Circuits".)

(7) Stop bit length selection

The stop bit length can be configured to 1 bit or 2 bits using the stop bit select register STPB.

STPB	EPR	PMD	Settings		
SIFD		FIVID	Stop bit	Parity bit	
1	1	1	2 bits	Odd	
		0	2 bits	Even	
	0	-	2 bits	Non parity	
0	1	1	1 bit	Odd	
		0	1 bit	Even	
	0	-	1 bit	Non parity	

Table 5.8.7.1 Stop bit and parity bit settings

- (8) Serial data input/output permutation
 - The S1C88650 provides the data input/output permutation select register SDP to select whether the serial data bits are transfered from the LSB or MSB. The SDP register should be set before writing data to TRXD0–TRXD7.

Data transmit procedure

The control procedure and operation during transmitting is as follows.

- (1) Write "0" in the transmit enable register TXEN to reset the serial interface.
- (2) Write "1" in the transmit enable register TXEN to set into the transmitting enable status.
- (3) Write the transmitting data into TRXD0–TRXD7. Also, when 7-bit data is selected, the TRXD7 data becomes invalid.

(4) Write "1" in the transmit control bit TXTRG and start transmitting.

This control causes the shift clock to change to enable and a start bit (LOW) is output to the SOUT terminal in synchronize to its rising edge. The transmitting data set to the shift register is shifted one bit at a time at each rising edge of the clock thereafter and is output from the SOUT terminal. After the data output, it outputs a stop bit (HIGH) and HIGH level is maintained until the next start bit is output.

The transmitting complete interrupt factor flag FSTRA is set to "1" at the point where the data transmitting is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point.

Set the following transmitting data using this interrupt.

(5) Repeat steps (3) to (4) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXEN, when the transmitting is completed.

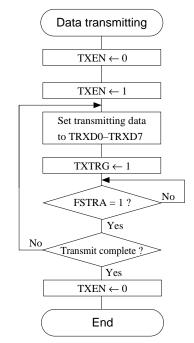


Fig. 5.8.7.2 Transmit procedure in asynchronous mode

Data receive procedure

The control procedure and operation during receiving is as follows.

- (1) Write "0" in the receive enable register RXEN to set the receiving disable status and to reset the respective PER, OER, FER flags that indicate parity, overrun and framing errors.
- (2) Write "1" in the receive enable register RXEN to set into the receiving enable status.
- (3) The shift clock will change to enable from the point where the start bit (LOW) has been input from the SIN terminal and the receive data will be synchronized to the rising edge following the second clock, and will thus be successively incorporated into the shift register. After data bits have been incorporated, the stop bit is checked and, if it is not HIGH, it becomes a framing error and the error interrupt factor flag FSERR is set to "1". When interrupt has been enabled, an error interrupt is generated at this point. When receiving is completed, data in the shift register is transferred to the received data buffer and the receiving complete interrupt flag FSREC is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point. (When an overrun error is generated, the interrupt factor flag FSREC is not set to "1" and a receiving complete interrupt is not generated.) If "with parity check" has been selected, a parity check is executed when data is transferred into the received data buffer from the shift register and if a parity error is detected, the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error mentioned above.
- (4) Read the received data from TRXD0–TRXD7 using receiving complete interrupt.

- (5) Write "1" to the receive control bit RXTRG to inform that the receive data has been read out. When the following data is received prior to writing "1" to RXTRG, it is recognized as an overrun error and the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error and parity error mentioned above.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXEN, when the receiving is completed.

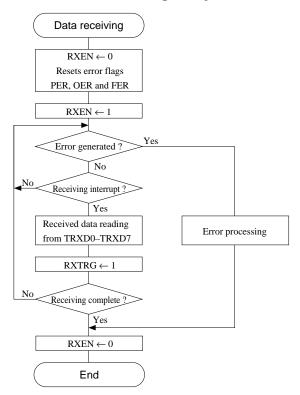


Fig. 5.8.7.3 Receiving procedure in asynchronous mode

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Serial Interface)

Receive error

During receiving the following three types of errors can be detected by an interrupt.

(1) Parity error

When writing "1" to the EPR register to select "with parity check", a parity check (vertical parity check) is executed during receiving. After each data bit is sent a parity check bit is sent. The parity check bit is a "0" or a "1". Even parity checking will cause the sum of the parity bit and the other bits to be even. Odd parity causes the sum to be odd. This is checked on the receiving side.

The parity check is performed when data received in the shift register is transferred to the received data buffer. It checks whether the parity check bit is a "1" or a "0" (the sum of the bits including the parity bit) and the parity set in the PMD register match. When it does not match, it is recognized as an parity error and the parity error flag PER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The PER flag is reset to "0" by writing "1". Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues.

The received data at this point cannot assured because of the parity error.

(2) Framing error

In asynchronous transfer, synchronization is adopted for each character at the start bit ("0") and the stop bit ("1"). When receiving has been done with the stop bit set at "0", the serial interface judges the synchronization to be off and a framing error is generated. When this error is generated, the framing error flag FER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The FER flag is reset to "0" by writing "1". Even when this error has been generated, the received data for it is loaded into the receive data buffer and the receive operation also continues. However, even when it does not become a framing error with the following data receipt, such data cannot be assured. Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. However, even when it does not become a framing error with the following data receiving, such data cannot be assured.

(3) Overrun error

When the next data is received before "1" is written to RXTRG, an overrun error will be generated, because the previous receive data will be overwritten. When this error is generated, the overrun error flag OER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The OER flag is reset to "0" by writing "1" into it. Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. Furthermore, when the timing for writing "1" to

RXTRG and the timing for the received data transfer to the received data buffer overlap, it will be recognized as an overrun error.

Timing chart

Figure 5.8.7.4 show the asynchronous transfer timing chart.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Serial Interface)

TXEN		
TXTRG(RD)		
TXTRG(WR)	1	
Sumpling —— clock		
SOUT (In 8-bit mode/Nor Interrupt	D0 D1 D2 D3 D4 D5 D6 D7 parity)	
(8	a) Transmit timing	
RXEN		
RXTRG(RD)		
RXTRG(WR)		
Sumpling		
SIN D0 D1 D2 D3 D4 D5 D6 D7 (In 8-bit mode/Non parity)	D0 D1 D2 D3 D4 D5 D6 D7	D0 D1 D2 D3 D4 D5 D6 D7
TRXD	1st data	2st data
OER control signal		
OER		
Interrupt	· 4	▲
(b) Receive timing	

Fig. 5.8.7.4 Timing chart (asynchronous transfer, LSB first, stop bit = 1 bit)

5.8.8 Interrupt function

This serial interface includes a function that generates the below indicated three types of interrupts.

- Transmitting complete interrupt
- Receiving complete interrupt
- Error interrupt

The interrupt factor flag FSxxx and the interrupt enable register ESxxx for the respective interrupt factors are provided and then the interrupt enable/ disable can be selected by the software. In addition, a priority level of the serial interface interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PSIF0 and PSIF1. For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see "5.14 Interrupt and Standby Status".

Figure 5.8.8.1 shows the configuration of the serial interface interrupt circuit.

Transmitting complete interrupt

This interrupt factor is generated at the point where the sending of the data written into the shift register has been completed and sets the interrupt factor flag FSTRA to "1". When set in this manner, if the corresponding interrupt enable register ESTRA is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written into the interrupt enable register ESTRA and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSTRA is set to "1". The interrupt factor flag FSTRA is reset to "0" by writing "1".

The following transmitting data can be set and the transmitting start (writing "1" to TXTRG) can be controlled by generation of this interrupt factor. The exception processing vector address is set as follows:

Transmitting complete interrupt: 00002CH

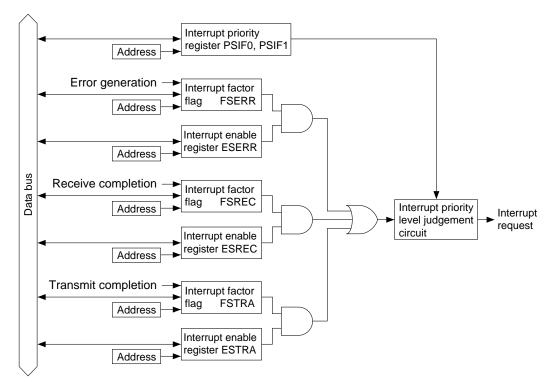


Fig. 5.8.8.1 Configuration of serial interface interrupt circuit

Receiving complete interrupt

This interrupt factor is generated at the point where receiving has been completed and the receive data incorporated into the shift register has been transferred into the received data buffer and it sets the interrupt factor flag FSREC to "1". When set in this manner, if the corresponding interrupt enable register ESREC is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written into the interrupt enable register ESREC and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSREC is set to "1". The interrupt factor flag FSREC is reset to "0" by writing "1".

The generation of this interrupt factor permits the received data to be read.

Also, the interrupt factor flag is set to "1" when a parity error or framing error is generated.

The exception processing vector address is set as follows:

Receiving complete interrupt: 00002AH.

Error interrupt

This interrupt factor is generated at the point where a parity error, framing error or overrun error is detected during receiving and it sets the interrupt factor flag FSERR to "1". When set in this manner, if the corresponding interrupt enable register ESERR is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written in the interrupt enable register ESERR and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSERR is set to "1". The interrupt factor flag FSERR is reset to "0" by writing "1".

Since all three types of errors result in the same interrupt factor, you should identify the error that has been generated by the error flags PER (parity error), OER (overrun error) and FER (framing error).

The exception processing vector address is set as follows:

Receive error interrupt: 000028H.

5.8.9 Control of serial interface

Table 5.8.9.1 show the serial interface control bits.

Table 5 8 0 L	(a)	Sarial	interface	control	hita
Table 5.8.9.1	(u)	seriui	interjace	comitor	Dus

Address	Bit	Name	Table 5.8.9.1(a) Serial interj Function	1	0	SR	R/W	Comment
00FF48		Name	T difetion					"0" when being read
006640		– EPR	- Domitry amobile manister	-	— No a monitor	- 0	D/W	
			Parity enable register	With parity	Non parity	-	R/W	
		PMD	Parity mode selection	Odd	Even	0	R/W	asynchronous mode
	D4	SCS1	Clock source selection			0	R/W	5
			<u>SCS1</u> <u>SCS0</u> <u>Clock source</u>					nous slave mode,
			1 1 Programmable timer					external clock is
	D3	SCS0	1 0 fosc3 / 4			0	R/W	selected.
			0 1 fosc3 / 8					
			0 0 fosc3 / 16					
	D2	SMD1	Serial I/F mode selection			0	R/W	
			SMD1 SMD0 Mode					
			1 1 Asynchronous 8-bit					
	D1	SMD0	1 0 Asynchronous 7-bit			0	R/W	
			0 1 Clock synchronous slave					
			0 0 Clock synchronous master					
	D0	ESIF	Serial I/F enable register	Serial I/F	I/O port	0	R/W	
00FF49	D7	_	_	-	-	-		"0" when being read
	D6	FER	Serial I/F framing error flag	Error	No error	0	R/W	Only for
			W	Reset (0)	No operation			asynchronous mode
	D5	PER	Serial I/F parity error flag R	Error	No error	0	R/W	
			W	Reset (0)	No operation			
	D4	OER	Serial I/F overrun error flag R	Error	No error	0	R/W	
			W	Reset (0)	No operation			
	D3	RXTRG	Serial I/F receive trigger/status R	Run	Stop	0	R/W	
			W	Trigger	No operation			
	D2	RXEN	Serial I/F receive enable	Enable	Disable	0	R/W	
	D1	TXTRG	Serial I/F transmit trigger/status	Run	Stop	0	R/W	
			W	Trigger	No operation			
	D0	TXEN	Serial I/F transmit enable	Enable	Disable	0	R/W	
00FF4A		TRXD7	Serial I/F transmit/Receive data D7 (MSB)			-		
		TRXD6	Serial I/F transmit/Receive data D6					
		TRXD5	Serial I/F transmit/Receive data D5					
		TRXD4	Serial I/F transmit/Receive data D4					
		TRXD3	Serial I/F transmit/Receive data D3	High	Low	X	R/W	
		TRXD2	Serial I/F transmit/Receive data D2					
			Serial I/F transmit/Receive data D2					
		TRXD0	Serial I/F transmit/Receive data D1 Serial I/F transmit/Receive data D0 (LSB)					
00FF4B	D0		Seriai 1/1' transmit/Receive data D0 (LSB)					Constantly, "0" with an
		-	-	-	-	-		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	-	-	-	-	-		
	D4	-	-	-	-	-		
	D3	-	-	-	-	-		
	D2	-	-	-	-	-		
		STPB	Serial I/F stop bit selection	2 bits	1 bit	0	R/W	
	D0	SDP	Serial I/F data input/output permutation selection	MSB first	LSB first	0	R/W	

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Serial Interface)

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20	D7	PK01 PK00	K00–K07 interrupt priority register		PK00 PSIF) Priority	0	R/W	Common
		PSIF1 PSIF0	Serial interface interrupt priority register	1 0 0	0 1 0	Level 2 Level 1 Level 0	0	R/W	
	D3	-	_	-		-	-		Constantly "0" when
	D2	-	_	-		_	-		being read
		PTM1 PTM0	Clock timer interrupt priority register	$\begin{array}{c} 1\\ 1\\ 0 \end{array}$	1 0 1	0 Priority level Level 3 Level 2 Level 1	0	R/W	
005500	D 7			0	0	Level 0			
00FF23	D7	-	-	-		-	_		Constantly "0" when
	D6	-	-	-		-	-		being read
	D5	-	-	-		-	-		
	D4	-	-	-		-	-		
	D3			-		-	-		
	D1	ESERR ESREC ESTRA	Serial <i>I/</i> F (error) interrupt enable register Serial <i>I/</i> F (receiving) interrupt enable register Serial <i>I/</i> F (transmitting) interrupt enable register	Interru enab	1	Interrupt disable	0	R/W	
00FF27	D7	_	-	-		_	_		Constantly "0" when
	D6	_	_	-		_	_		being read
	D5	-	_	-		_	_		
	D4	-	-	-		_	_		
	D3	-	-	-		_	_		
		FSERR	Serial I/F (error) interrupt factor flag	(R) Genera		(R) No generated			
		FSREC	Serial I/F (receiving) interrupt factor flag	(W)		(Ŵ)	0	R/W	
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag	Rese	et	No operation			

Table 5.8.9.1(b) Serial interface control bits

ESIF: 00FF48H•D0

Sets the serial interface terminals (P10–P13).

When "1" is written:Serial input/output terminalWhen "0" is written:I/O port terminalReading:Valid

The ESIF is the serial interface enable register and P10–P13 terminals become serial input/output terminals (SIN, SOUT, $\overline{\text{SCLK}}$, $\overline{\text{SRDY}}$) when "1" is written, and they become I/O port terminals when "0" is written.

Also, see Table 5.8.3.2 for the terminal settings according to the transfer modes.

At initial reset, ESIF is set to "0" (I/O port).

SMD0, SMD1: 00FF48H•D1, D2

Set the transfer modes according to Table 5.8.9.2.

Table 5.8.9.2 Transfer mode settings

SMD1	SMD0	Mode
1	1	Asynchronous 8-bit
1	0	Asynchronous 7-bit
0	1	Clock synchronous slave
0	0	Clock synchronous master

SMD0 and SMD1 can also read out. At initial reset, this register is set to "0" (clock synchronous master mode).

SCS0, SCS1: 00FF48H•D3, D4

Select the clock source according to Table 5.8.9.3.

Tuble 5.6.7.5 Clock source selection					
SCS1	SCS0	Clock source			
1	1	Programmable timer			
1	0	fosc3 / 4			
0	1	fosc3 / 8			
0	0	fosc3 / 16			

Table 5.8.9.3 Clock source selection

SCS0 and SCS1 can also be read out.

In the clock synchronous slave mode, setting of this register is invalid.

At initial reset, this register is set to "0" (fosc₃/16).

SDP: 00FF4BH•D0

Selects the serial data input/output permutation.

When "1" is written: MSB first When "0" is written: LSB first Reading: Valid

Select whether the data input/output permutation will be MSB first or LSB first. At initial reset, SDP is set to "0" (LSB first).

STPB: 00FF4BH•D1

Selects the stop bit length for asynchronous data transfer.

When "1" is written:	2 bits
When "0" is written:	1 bit
Reading:	Valid

STPB is the stop bit select register that is effective in asynchronous mode. When "1" is written to STPB, the stop bit length is set to 2 bits, and when "0" is written, it is set to 1 bit.

In clock synchronous mode, no start/stop bits can be added to transfer data. Therefore, setting STPB becomes invalid.

At initial reset, STPB is set to "0" (1 bit).

EPR: 00FF48H•D6

Selects the parity function.

When "1" is written:With parityWhen "0" is written:Non parityReading:Valid

Selects whether or not to check parity of the received data and to add a parity bit to the transmitting data. When "1" is written to EPR, the most significant bit of the received data is considered to be the parity bit and a parity check is executed. A parity bit is added to the transmitting data. When "0" is written, neither checking is done nor is a parity bit added.

Parity is valid only in asynchronous mode and the EPR setting becomes invalid in the clock synchronous mode.

At initial reset, EPR is set to "0" (non parity).

PMD: 00FF48H•D5

Selects odd parity/even parity.

When "1" is written:	Odd parity
When "0" is written:	Even parity
Reading:	Valid

When "1" is written to PMD, odd parity is selected and even parity is selected when "0" is written. The parity check and addition of a parity bit is only valid when "1" has been written to EPR. When "0" has been written to EPR, the parity setting by PMD becomes invalid.

At initial reset, PMD is set to "0" (even parity).

TXEN: 00FF49H•D0

Sets the serial interface to the transmitting enable status.

When "1" is written:Transmitting enableWhen "0" is written:Transmitting disableReading:Valid

When "1" is written to TXEN, the serial interface shifts to the transmitting enable status and shifts to the transmitting disable status when "0" is written. Set TXEN to "0" when making the initial settings of the serial interface and similar operations. At initial reset, TXEN is set to "0" (transmitting disable).

TXTRG: 00FF49H•D1

Functions as the transmitting start trigger and the operation status indicator (transmitting/stop status).

When "1" is read:	During transmitting
When "0" is read:	During stop
When "1" is written: When "0" is written:	8

Starts the transmitting when "1" is written to TXTRG after writing the transmitting data. TXTRG can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop.

At initial reset, TXTRG is set to "0" (during stop).

RXEN: 00FF49H•D2

Sets the serial interface to the receiving enable status.

When "1" is written:Receiving enableWhen "0" is written:Receiving disableReading:Valid

When "1" is written to RXEN, the serial interface shifts to the receiving enable status and shifts to the receiving disable status when "0" is written. Set RXEN to "0" when making the initial settings of the serial interface and similar operations. At initial reset, RXEN is set to "0" (receiving disable).

RXTRG: 00FF49H•D3

Functions as the receiving start trigger or preparation for the following data receiving and the operation status indicator (during receiving/during stop).

When "1" is read:	During receiving
When "0" is read:	During stop
When "1" is written:	Receiving start/following
	data receiving preparation
When "0" is written:	Invalid

RXTRG has a slightly different operation in the clock synchronous system and the asynchronous system.

The RXTRG in the clock synchronous system, is used as the trigger for the receiving start. Writes "1" into RXTRG to start receiving at the point where the receive data has been read and the following receive preparation has been done. (In the slave mode, SRDY becomes "0" at the point where "1" has been written into into the RXTRG.)

RXTRG is used in the asynchronous system for preparation of the following data receiving. Reads the received data located in the received data buffer and writes "1" into RXTRG to inform that the received data buffer has shifted to empty. When "1" has not been written to RXTRG, the overrun error flag OER is set to "1" at the point where the following receiving has been completed. (When the receiving has been completed between the operation to read the received data and the operation to write "1" into RXTRG, an overrun error occurs.)

In addition, RXTRG can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRG is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped.

At initial reset, RXTRG is set to "0" (during stop).

TRXD0-TRXD7: 00FF4AH

During transmitting

Write the transmitting data into the transmit shift register.

When "1" is written: HIGH level When "0" is written: LOW level

Write the transmitting data prior to starting transmitting.

In the case of continuous transmitting, wait for the transmitting complete interrupt, then write the data. The TRXD7 becomes invalid for the asynchronous 7-bit mode.

Converted serial data for which the bits set at "1" as HIGH (VDD) level and for which the bits set at "0" as LOW (Vss) level are output from the SOUT terminal.

During receiving

Read the received data.

When "1" is a	read: I	HIGH level
When "0" is a	read: I	LOW level

The data from the received data buffer can be read out. Since the sift register is provided separately from this buffer, reading can be done during the receive operation in the asynchronous mode. (The buffer function is not used in the clock synchronous mode.) Read the data after waiting for the receiving complete interrupt.

When performing parity check in the asynchronous 7-bit mode, "0" is loaded into the 8th bit (TRXD7) that corresponds to the parity bit.

The serial data input from the SIN terminal is level converted, making the HIGH (VDD) level bit "1" and the LOW (Vss) level bit "0" and is then loaded into this buffer.

At initial reset, the buffer content is undefined.

OER: 00FF49H•D4

Indicates the generation of an overrun error.

When "1" is read:	Error
When "0" is read:	No error
When "1" is written: When "0" is written:	

OER is an error flag that indicates the generation of an overrun error and becomes "1" when an error has been generated.

An overrun error is generated when the receiving of data has been completed prior to the writing of "1" to RXTRG in the asynchronous mode. OER is reset to "0" by writing "1". At initial reset and when RYEN is "0" OER is set to

At initial reset and when RXEN is "0", OER is set to "0" (no error).

PER: 00FF49H•D5

Indicates the generation of a parity error.

When "1" is read:	Error
When "0" is read:	No error
When "1" is written: When "0" is written:	

PER is an error flag that indicates the generation of a parity error and becomes "1" when an error has been generated.

When a parity check is performed in the asynchronous mode, if data that does not match the parity is received, a parity error is generated.

PER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", PER is set to "0" (no error).

FER: 00FF49H•D6

Indicates the generation of a framing error.

When "1" is read:	Error
When "0" is read:	No error
When "1" is written: When "0" is written:	

FER is an error flag that indicates the generation of a framing error and becomes "1" when an error has been generated.

When the stop bit for the receiving of the asynchronous mode has become "0", a framing error is generated.

FER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", FER is set to "0" (no error).

PSIF0, PSIF1: 00FF20H•D4, D5

Sets the priority level of the serial interface interrupt. The two bits PSIF0 and PSIF1 are the interrupt priority register corresponding to the serial interface interrupt. Table 5.8.9.4 shows the interrupt priority level which can be set by this register.

Table 5.8.9.4	Interrunt	priority	level	settings
10010 5.0.7.7	mempi	priority	ievei	sennes

PSIF1	PSIF0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

ESTRA, ESREC, ESERR: 00FF23H•D0, D1, D2

Enables or disables the generation of an interrupt for the CPU.

When "1" is written:Interrupt enabledWhen "0" is written:Interrupt disabledReading:Valid

ESTRA, ESREC and ESERR are interrupt enable registers that respectively correspond to the interrupt factors for transmitting complete, receiving complete and receiving error. Interrupts set to "1" are enabled and interrupts set to "0" are disabled. At initial reset, this register is set to "0" (interrupt disabled).

FSTRA, FSREC, FSERR: 00FF27H•D0, D1, D2

Indicates the serial interface interrupt generation status.

When "1" is read: When "0" is read:	Interrupt factor present Interrupt factor not present
When "1" is written: When "0" is written:	6

FSTRA, FSREC and FSERR are interrupt factor flags that respectively correspond to the interrupts for transmitting complete, receiving complete and receiving error and are set to "1" by generation of each factor.

Transmitting complete interrupt factor is generated at the point where the data transmitting of the shift register has been completed.

Receiving complete interrupt factor is generated at the point where the received data has been transferred into the received data buffer.

Receive error interrupt factor is generated when a parity error, framing error or overrun error has been detected during data receiving.

When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU.

Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.8.10 Programming notes

- (1) Be sure to initialize the serial interface mode in the transmitting/receiving disable status (TXEN = RXEN = "0").
- (2) Do not perform double trigger (writing "1") to TXTRG (RXTRG) when the serial interface is in the transmitting (receiving) operation. Furthermore, do not execute the SLP instruction. (When executing the SLP instruction, set TXEN = RXEN = "0".)
- (3) In the clock synchronous mode, since one clock line (SCLK) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.) Consequently, be sure not to write "1" to RXTRG (TXTRG) when TXTRG (RXTRG) is "1".
- (4) When a parity error or flaming error is generated during receiving in the asynchronous mode, the receiving error interrupt factor flag FSERR is set to "1" prior to the receiving complete interrupt factor flag FSREC for the time indicated in Table 5.8.10.1. Consequently, when an error is generated, you should reset the receiving complete interrupt factor flag FSREC to "0" by providing a wait time in error processing routines and similar routines. When an overrun error is generated, the receiving complete interrupt factor flag FSREC is not set to "1" and a receiving complete interrupt is not generated.

 Table 5.8.10.1
 Time difference between FSERR

 and FSREC on error generation

Clock source	Time difference			
fosc3 / n	1/2 cycles of fosc3 / n			
Programmable timer	1 cycle of timer 1 underflow			

(5) When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface. A time interval of several msec to several 10 msec,

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 8, "ELECTRICAL CHARACTERISTICS".) At initial reset, the OSC3 oscillation circuit is set to ON status.

5.9 Clock Timer

5.9.1 Configuration of clock timer

The S1C88650 has built in a clock timer that uses the OSC1 oscillation circuit as clock source. The clock timer is composed of an 8-bit binary counter that uses the 256 Hz signal dividing fOSC1 as its input clock and can read the data of each bit (128–1 Hz) by software.

Normally, this clock timer is used for various timing functions such as clocks.

The configuration of the clock timer is shown in Figure 5.9.1.1.

5.9.2 Interrupt function

The clock timer can generate an interrupt by each of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals. The configuration of the clock timer interrupt circuit is shown in Figure 5.9.2.1.

Interrupts are generated by respectively setting the corresponding interrupt factor flags FTM32, FTM8, FTM2 and FTM1 at the falling edge of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals to "1". Interrupt can be prohibited by the setting the interrupt enable registers ETM32, ETM8, ETM2 and ETM1 corresponding to each interrupt factor flag. In addition, a priority level of the clock timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PTM0 and PTM1.

For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see "5.14 Interrupt and Standby Status".

The exception processing vector addresses for each interrupt factor are respectively set as shown below.

32 Hz interrupt:	000034H
8 Hz interrupt:	000036H
2 Hz interrupt:	000038H
1 Hz interrupt:	00003AH

Figure 5.9.2.2 shows the timing chart for the clock timer.

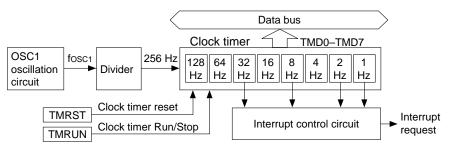


Fig. 5.9.1.1 Configuration of clock timer

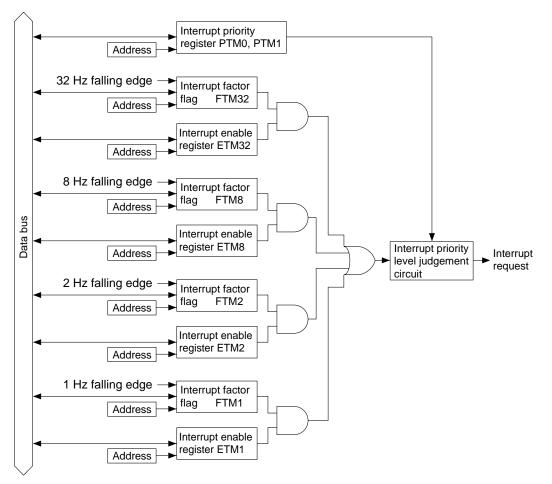


Fig. 5.9.2.1 Configuration of clock timer interrupt circuit

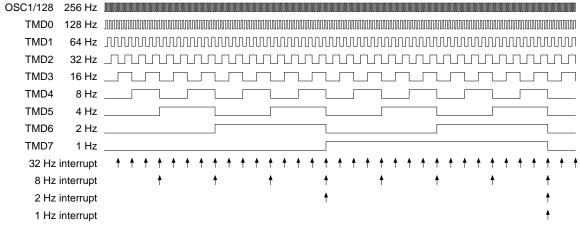


Fig. 5.9.2.2 Timing chart of clock timer

5.9.3 Control of clock timer

Table 5.9.3.1 shows the clock timer control bits.

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF40		WDEN	Watchdog timer enable	Enable	Disable	1	R/W	Comment
001140		FOUT2	FOUT frequency selection	Ellable	Disable	0	R/W	
		FOUT1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	R/W	
	D4	FOUT0	$\begin{array}{cccccccc} 0 & 1 & 1 & fosc1 / 8 \\ 1 & 0 & 0 & fosc3 / 1 \\ 1 & 0 & 1 & fosc3 / 2 \\ 1 & 1 & 0 & fosc3 / 4 \\ 1 & 1 & 1 & fosc3 / 8 \end{array}$			0	R/W	
	D3		FOUT output control	On	Off	0	R/W	
		WDRST	Watchdog timer reset	Reset	No operation	-	W	Constantly "0" when
		TMRST	Clock timer reset	Reset	No operation	_	W	being read
		TMRUN	Clock timer Run/Stop control	Run	Stop	0	R/W	being read
00FF41	-	TMD7	Clock timer data 1 Hz	Kuli	Stop	0	K/ W	
001141		TMD7 TMD6	Clock timer data 2 Hz					
		TMD5	Clock timer data 4 Hz					
		TMD3	Clock timer data 8 Hz					
		TMD4	Clock timer data 16 Hz	High	Low	0	R	
		TMD2	Clock timer data 32 Hz					
		TMD1	Clock timer data 64 Hz					
		TMD1 TMD0						
005500		PK01	Clock timer data 128 Hz	PK01 PK0	0 Priority	0	DAV	
00FF20			K00–K07 interrupt priority register	PSIF1 PSIF	0 level	0	R/W	
		PK00		$ 1 1 1 \\ 1 0 $	Level 3 Level 2		DAV	
		PSIF1	Serial interface interrupt priority register	0 1	Level 1	0	R/W	
		PSIF0		0 0	Level 0			
	D3	-	-	-	-	-		Constantly "0" when
	D2	-		- PTM1 PTM	– IO Priority level	-		being read
		PTM1 PTM0	Clock timer interrupt priority register	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Level 3 Level 2 Level 1	0	R/W	
	20				Level 1 Level 0			
00FF22	D7	-	_	-	-	-		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	-	_	-	-	_		
	D4	_	_	-	-	-		
	D3	ETM32	Clock timer 32 Hz interrupt enable register					
	D2	ETM8	Clock timer 8 Hz interrupt enable register	Interrupt	Interrupt	0	DAV	
	D1	ETM2	Clock timer 2 Hz interrupt enable register	enable	disable	0	R/W	
	D0	ETM1	Clock timer 1 Hz interrupt enable register	1				
00FF26	D7	-	_	-	-	-		Constantly "0" when
	D6	_	-	-	-	_		being read
	D5	_	-	-	-	_		
	D4	-	-	-	-	_		1
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	(R)	(R)			
		FTM8	Clock timer 8 Hz interrupt factor flag	Generated	Not generated	6		
		FTM2	Clock timer 2 Hz interrupt factor flag	(W)	(W)	0	R/W	
		FTM1	Clock timer 1 Hz interrupt factor flag	Reset	No operation			

Table 5.9.3.1 Clock timer control bits

TMD0–TMD7: 00FF41H

The clock timer data can be read out. Each bit of TMD0–TMD7 and frequency correspondence are as follows:

TMD0:	128 Hz	TMD4:	8 Hz
TMD1:	64 Hz	TMD5:	4 Hz
TMD2:	32 Hz	TMD6:	2 Hz
TMD3:	16 Hz	TMD7:	1 Hz

Since the TMD0–TMD7 is exclusively for reading, the write operation is invalid. At initial reset, the timer data is set to "00H".

TMRST: 00FF40H•D1

Resets the clock timer.

When "1" is written:Clock timer resetWhen "0" is written:No operationReading:Always "0"

The clock timer is reset by writing "1" to the TMRST.

When the clock timer is reset in the RUN status, it restarts immediately after resetting. In the case of the STOP status, the reset data "00H" is maintained. No operation results when "0" is written to the TMRST.

Since the TMRST is exclusively for writing, it always becomes "0" during reading.

TMRUN: 00FF40H•D0

Controls RUN/STOP of the clock timer.

When "1" is written:	RUN
When "0" is written:	STOP
Reading:	Valid

The clock timer starts up-counting by writing "1" to the TMRUN and stops by writing "0". In the STOP status, the count data is maintained until it is reset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

At initial reset, the TMRUN is set to "0" (STOP).

PTM0, PTM1: 00FF20H•D0, D1

Sets the priority level of the clock timer interrupt. The two bits PTM0 and PTM1 are the interrupt priority register corresponding to the clock timer interrupt. Table 5.9.3.2 shows the interrupt priority level which can be set by this register.

Table 5.9.3.2	Interrupt	priority	level settings
---------------	-----------	----------	----------------

PTM1	PTM0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

ETM1, ETM2, ETM8, ETM32: 00FF22H•D0-D3

Enables or disables the generation of an interrupt for the CPU.

When "1" is written:Interrupt enabledWhen "0" is written:Interrupt disabledReading:Valid

The ETM1, ETM2, ETM8 and ETM32 are interrupt enable registers that respectively correspond to the interrupt factors for 1 Hz, 2 Hz, 8 Hz and 32 Hz. Interrupts set to "1" are enabled and interrupts set to "0" are disabled.

At initial reset, this register is set to "0" (interrupt disabled).

FTM1, FTM2, FTM8, FTM32: 00FF26H•D0–D3

Indicates the clock timer interrupt generation status.

When "1" is read:	Interrupt factor present
When "0" is read:	Interrupt factor not present
When "1" is written: When "0" is written:	0

The FTM1, FTM2, FTM8 and FTM32 are interrupt factor flags that respectively correspond to the interrupts for 1 Hz, 2 Hz, 8 Hz and 32 Hz and are set to "1" at the falling edge of each signal. When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.9.4 Programming notes

(1) The clock timer is actually made to RUN/STOP in synchronization with the falling edge of the 256 Hz signal after writing to the TMRUN register. Consequently, when "0" is written to the TMRUN, the timer shifts to STOP status when the counter is incremented "1". The TMRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure 5.9.4.1 shows the timing chart of the RUN/STOP control.

256 Hz			
TMRUN(RD)			
TMRUN(WR)			
TMDX	57H	(58H)(59H)(5AH)(5BH)	5CH

Fig. 5.9.4.1 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the clock timer is in the RUN status (TMRUN = "1"). The clock timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (TMRUN = "0") prior to executing the SLP instruction.

5.10 Programmable Timer

5.10.1 Configuration of programmable timer

The S1C88650 has four built-in 16-bit programmable timer systems. Each system timer consists of a 16-bit presettable down counter, and can be used as 16-bit \times 1 channel or 8-bit \times 2 channels of programmable timer. Furthermore, they function as event counters using the input port terminal. Figures 5.10.1.1 and 5.10.1.2 shows the configuration of the 16-bit programmable timers. Two 8-bit down counters, the reload data register and compare data register corresponding to each down counter are arranged in the 16-bit programmable timer.

The reload data register is used to set an initial value to the down counter.

The compare data register stores data for comparison with the content of the down counter. By setting these registers, a PWM waveform is generated and it can be output to external devices as the TOUT0, 1, 2 or 3 signal. Furthermore, the serial interface clock is generated from the Timer 1 underflow signal. The Timer 5 underflow signal can be used to set the frame frequency for the LCD driver.

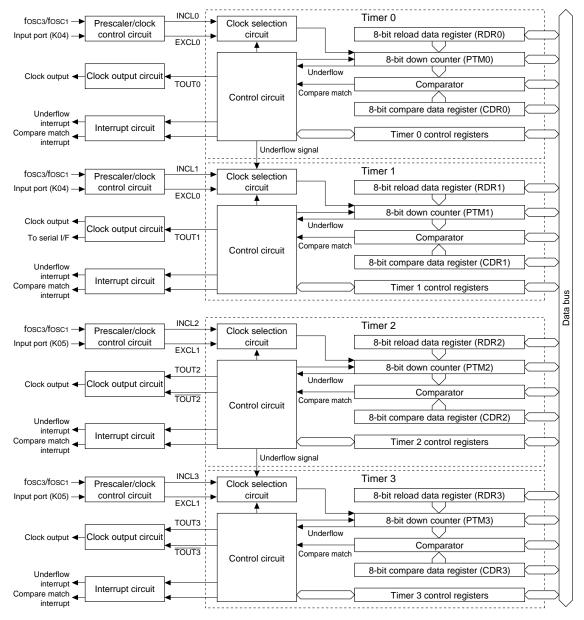


Fig. 5.10.1.1 Configuration of 16-bit programmable timer (Timers 1–3)

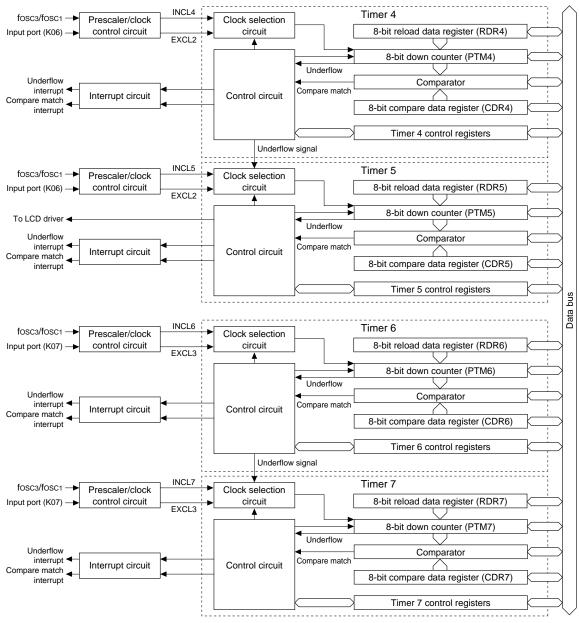


Fig. 5.10.1.2 Configuration of 16-bit programmable timer (Timers 4–7)

5.10.2 Operation mode

Timers 0 and 1, Timers 2 and 3, Timers 4 and 5, or Timers 6 and 7 can be used as two channels of 8-bit timers or one channel of 16-bit timer. Two kinds of operation modes are provided corresponding to this configuration, and it can be selected by the 8/16-bit mode selection registers MODE16_A (for Timer 0–1) through MODE16_D (for Timer 6–7). When "0" is set to the MODE16_A register, Timers 0 and 1 enter the 8-bit mode (8-bit × 2 channels) and when "1" is set, they enter the 16-bit mode (16-bit × 1 channel). In the 8-bit mode, Timers 0 and 1 can be controlled individually.

In the 16-bit mode, the underflow signal of Timer 0 is used as the input clock of Timer 1 so that the down counters operate as a 16-bit counter. The timer in the 16-bit mode is controlled with the control registers for Timer 0 except for the clock output.

MODE16_B through MODE16_D have the same function.

Figure 5.10.2.1 shows the timer configuration depending on the operation mode and Table 5.10.2.1 shows the configuration of the control registers.

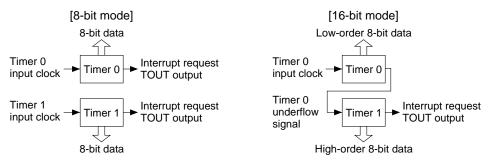


Fig. 5.10.2.1 Counter configuration in 8- and 16-bit mode (example of Timers 0 and 1)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF30	D7	MODE16_A	PTM0-1 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_A	External clock 0 noise rejecter selection	Enable	Disable	0	R/W	
	D5	-	_	-	-	-		"0" when being read
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	PTOUT0	PTM0 clock output control	On	Off	0	R/W	
	D2	PTRUN0	PTM0 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET0	PTM0 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL0	PTM0 input clock selection	External clock	Internal clock	0	R/W	
00FF31	D7	-	_	-	-	-		Constantly "0" when
	D6	-	_	-	-	_		being read
	D5	-	_	-	-	_		
	D4	_	R/W register	1	0	0	R/W	Reserved register
	D3	PTOUT1	PTM1 clock output control	On	Off	0	R/W	
	D2	PTRUN1	PTM1 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET1	PTM1 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL1	PTM1 input clock selection	External clock	Internal clock	0	R/W	

Table 5.10.2.1(a) Control registers in 8-bit mode (example of Timers 0 and 1)

Table 5.10.2.1(b) Control registers in 16-bit mode (example of Timers 0 and 1)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF30	D7	MODE16_A	PTM0-1 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_A	External clock 0 noise rejecter selection	Enable	Disable	0	R/W	
	D5	-	_	-	-	_		"0" when being read
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	PTOUT0	Invalid (fixed at "0")	Invalid	Fixed at "0"	0	R/W	
	D2	PTRUN0	PTM0 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET0	PTM0 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL0	PTM0 input clock selection	External clock	Internal clock	0	R/W	
00FF31	D7	-	_	-	-	_		Constantly "0" when
	D6	-	_	-	-	_		being read
	D5	-	_	-	-	_		
	D4	_	R/W register	1	0	0	R/W	Reserved register
	D3	PTOUT1	PTM1 clock output control	On	Off	0	R/W	
	D2	PTRUN1	Invalid (fixed at "0")	Invalid	Fixed at "0"	0	R/W	
	D1	PSET1	Invalid (fixed at "0")	Invalid	Fixed at "0"	0	W	"0" when being read
	D0	CKSEL1	Invalid (fixed at "0")	Invalid	Fixed at "0"	0	R/W	

Note: The register names contain a timer number (0–7) to identify the timer to which the register belongs. The following explanation uses "x" instead of the timer number except when it is required. For example, PTRUNx represents PTRUN0 through PTRUN7. Furthermore, a pair of timers are described as Timer(L) and Timer(H) in explanations for 16-bit mode. Timer(L) = Timer 0, Timer 2, Timer 4 or Timer 6 Timer(H) = Timer 1, Timer 3, Timer 5 or Timer 7

This is used for register names.

5.10.3 Setting of input clock

The clock to be input to the counter can be selected from either the internal clock or external clock by the input clock selection register (CKSEL) provided for each timer. The internal clock is an output of the prescaler. The external clock is used for the event counter function. A signal from the input port is used as the count clock. Table 5.10.3.1 shows the input clock selection register and input clock of each timer.

Table 5.10.5.1 Input clock selection				
Timer	Register setting	Input clock		
Timer 0	CKSEL0 = "0"	INCL0 (Prescaler)		
	CKSEL0 = "1"	EXCL0 (K04 input)		
Timer 1	CKSEL1 = "0"	INCL1 (Prescaler)		
	CKSEL1 = "1"	EXCL0 (K04 input)		
Timer 2	CKSEL2 = "0"	INCL2 (Prescaler)		
	CKSEL2 = "1"	EXCL1 (K05 input)		
Timer 3	CKSEL3 = "0"	INCL3 (Prescaler)		
	CKSEL3 = "1"	EXCL1 (K05 input)		
Timer 4	CKSEL4 = "0"	INCL4 (Prescaler)		
	CKSEL4 = "1"	EXCL2 (K06 input)		
Timer 5	CKSEL5 = "0"	INCL5 (Prescaler)		
	CKSEL5 = "1"	EXCL2 (K06 input)		
Timer 6	CKSEL6 = "0"	INCL6 (Prescaler)		
	CKSEL6 = "1"	EXCL3 (K07 input)		
Timer 7	CKSEL7 = "0"	INCL7 (Prescaler)		
	CKSEL7 = "1"	EXCL3 (K07 input)		

Table 5.10.3.1 Input clock selection

When the external clock is selected, a signal from the input port is input to the programmable timer. An noise rejecter is incorporated in the external clock input circuit and it can be enabled/disabled using the external clock noise rejecter select registers PTNREN_A through PTNREN_D corresponding to the EXCL0 through EXCL3 inputs. Writing "1" to PTNREN_A (-D) enables the noise rejecter for the external clock EXCL0 (-3). The noise rejecter regards pulses less than a 16/fosc1 seconds in width as noise and rejects them (an external clock must have a pulse width at least double the rejected width). When PTNREN_A (-D) is "0", the external clock bypasses the noise rejecter.

When the internal clock is used, select a source clock and a division ratio of the prescaler to set the clock frequency for each timer.

The source clock is specified using the source clock selection register PRTFx provided for each timer. When "1" is written to PRTFx, the OSC1 clock is selected as the source clock for Timer x. When "0" is written, the OSC3 clock is selected. The OSC3 oscillation circuit must be on before the OSC3 can be used. See "5.4 Oscillation Circuits" for the controlling of the OSC3 oscillation circuit.

The prescaler provides the division ratio selection register PSTx0–PSTx2 for each timer. Note that the division ratio varies depending on the selected source clock.

Table 5.10.3.2 Di	vision ratio	and control	registers

Register			Dividing ratio		
PSTx2	PSTx1	PSTx0	(OSC3)	(OSC1)	
1	1	1	fosc3/4096	fosc1/128	
1	1	0	fosc3/1024	fosc1/64	
1	0	1	fosc3/256	fosc1/32	
1	0	0	fosc3/64	fosci/16	
0	1	1	fosc3/32	fosc1/8	
0	1	0	fosc3/8	fosc1/4	
0	0	1	fosc3/2	fosc1/2	
0	0	0	fosc3/1	fosc1/1	

The set clock is output to Timer x by writing "1" to the clock control register PRPRTx.

When the 16-bit mode is selected, the programmable timer operates with the clock input to Timer(L), and Timer(H) inputs the Timer(L) underflow signal as the clock. Therefore, the setting of Timer(H) input clock is invalid.

5.10.4 Operation and control of timer

Reload data register and setting of initial value

The reload data register (RDRx) is used to set an initial value of the down counter.

In the 8-bit mode, RDRx is used as an 8-bit register separated for each timer.

In the 16-bit mode, the RDR(L) register is handled as low-order 8 bits of reload data, and the RDR(H) register is as high-order 8 bits.

The reload data register can be read and written, and all the registers are set to FFH at initial reset.

Data written in this register is loaded into the down counter, and a down counting starts from the value.

The down counter is preset, in the following two cases:

1) When software presets

The software preset can be done using the preset control bits PSETx corresponding to Timer x. When the preset control bit is set to "1", the content of the reload data register is loaded into the down counter at that point. In the 16-bit mode, a 16-bit reload data is loaded all at one time by setting PSET(L). In this case, writing to PSET(H) is invalid.

2) When down counter has underflowed during a count Since the down counter presets the reload data by the underflow, the underflow period is decided according to the value set in the reload data register. This underflow generates an interrupt, and controls the clock (TOUTx signal) output.

Compare data register

The programmable timer has a built-in data comparator so that count data can be compared with an optional value. The compare data register (CDRx) is used to set the value to be compared. In the 8-bit mode, CDRx is used as an 8-bit register separated for each timer.

In the 16-bit mode, the CDR(L) register is handled as low-order 8 bits of compare data, and the CDR(H) register is as high-order 8 bits.

The compare data register can be read and written, and all the registers are set to 00H at initial reset.

The programmable timer compares count data with the compare data register (CDRx), and generates a compare match signal when they become the same value. This compare match signal generates an interrupt, and controls the clock (TOUTx signal) output.

Timer operation

Timer is equipped with PTRUNx register which controls the RUN/STOP of the timer. Timer x starts down counting by writing "1" to the PTRUNx register. However, it is necessary to control the input clock and to preset the reload data before starting a count. When "0" is written to PTRUNx register, clock input is prohibited, and the count stops. This RUN/STOP control does not affect data in the counter. The data in the counter is maintained during count deactivation, so it is possible to resume counting from the data.

In the 8-bit mode, the timers can be controlled individually by the PTRUNx register. In the 16-bit mode, the PTRUN(L) register controls a pair of timers as a 16-bit timer. In this case, control of the PTRUN(H) register is invalid.

The buffers PTMx is attached to the counter, and reading is possible in optional timing.

When the counter agrees with the data set in the compare data register during down counting, the timer generates a compare match interrupt. And, when the counter underflows, an underflow interrupt is generated, and the initial value set in the reload data register is loaded to the counter. The interrupt generated does not stop the down counting.

After an underflow interrupt is generated, the counter continues counting from the initial value reloaded.

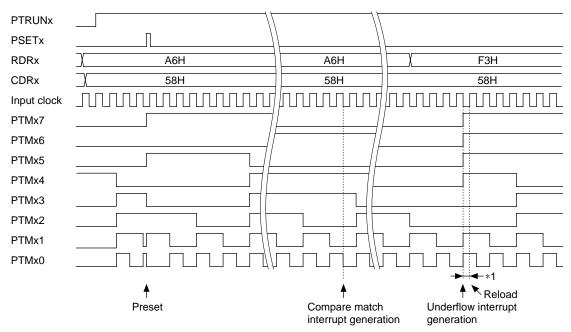


Fig. 5.10.4.1 Basic operation timing of counter (an example of 8-bit mode)

Note: The programmable timer counts down at the falling edge of the input clock and at the same time it generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter and the counter data is determined at the next rising edge of the input clock (period shown in as *1 in the figure).

To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter data is determined including the reloading period *1. Be especially careful when using the OSC1 (low-speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3 (high-speed clock).

5.10.5 Interrupt function

The 16-bit programmable timer can generate an interrupt with the compare match signal and underflow signal of each timer.

Figure 5.10.5.1 shows the configuration of the 16bit programmable timer interrupt circuit.

The compare match signal and underflow signal of each timer set the corresponding interrupt factor flag to "1". At that point, the interrupt is generated. The interrupt can also be prohibited by setting the interrupt enable register to correspond with the interrupt factor flag.

Furthermore, the priority level of the interrupt for the CPU can be set to an optional level (0–3) using the interrupt priority register.

Table 5.10.5.1 shows the interrupt factor flags, interrupt enable registers and interrupt priority registers corresponding to the interrupt factors.

In the 8-bit mode, the compare match interrupt factor flag and underflow interrupt factor flag are individually set to "1" by the timers.

In the 16-bit mode, the interrupt factor flags of Timer(H) are set to "1" by the compare match and underflow in 16 bits.

Refer to Section 5.14, "Interrupt and Standby Status", for details of the interrupt control registers and operations subsequent to interrupt generation.

The exception processing vector addresses for the 16bit programmable timer interrupt are set as follows:

Timer 0 underflow interrupt:	000016H
Timer 0 compare match interrupt:	000018H
Timer 1 underflow interrupt:	00001AH
Timer 1 compare match interrupt:	00001CH
Timer 2 underflow interrupt:	00001EH
Timer 2 compare match interrupt:	000020H
Timer 3 underflow interrupt:	000022H
Timer 3 compare match interrupt:	000024H
Timer 4 underflow interrupt:	00003CH
Timer 4 compare match interrupt:	00003EH
Timer 5 underflow interrupt:	000040H
Timer 5 compare match interrupt:	000042H
Timer 6 underflow interrupt:	000044H
Timer 6 compare match interrupt: Timer 7 underflow interrupt: Timer 7 compare match interrupt:	00004411 000046H 000048H 00004AH

	Interrupt factor	Interrupt factor flag		Interrupt	enable register	Interrupt priority register		
		Name	Address-Dx	Name	Address-Dx	Name	Address.Dx	
Timer 0	Counter underflow	FTU0	00FF29H·D0	ETU0	00FF25H·D0	PPT0	00FF21H·D2	
	Compare match	FTC0	00FF29H·D1	ETC0	00FF25H·D1	PPT1	00FF21H·D3	
Timer 1	Counter underflow	FTU1	00FF29H·D2	ETU1	00FF25H·D2			
	Compare match	FTC1	00FF29H·D3	ETC1	00FF25H·D3			
Timer 2	Counter underflow	FTU2	00FF29H·D4	ETU2	00FF25H·D4	PPT2	00FF21H·D4	
	Compare match	FTC2	00FF29H·D5	ETC2	00FF25H·D5	PPT3	00FF21H·D5	
Timer 3	Counter underflow	FTU3	00FF29H·D6	ETU3	00FF25H·D6			
	Compare match	FTC3	00FF29H·D7	ETC3	00FF25H·D7			
Timer 4	Counter underflow	FTU4	00FF2EH·D0	ETU4	00FF2CH·D0	PPT4	00FF2AH·D0	
	Compare match	FTC4	00FF2EH·D1	ETC4	00FF2CH·D1	PPT5	00FF2AH·D1	
Timer 5	Counter underflow	FTU5	00FF2EH·D2	ETU5	00FF2CH·D2			
	Compare match	FTC5	00FF2EH·D3	ETC5	00FF2CH·D3			
Timer 6	Counter underflow	FTU6	00FF2EH·D4	ETU6	00FF2CH·D4	PPT6	00FF2AH·D2	
	Compare match	FTC6	00FF2EH·D5	ETC6	00FF2CH·D5	PPT7	00FF2AH·D3	
Timer 7	Counter underflow	FTU7	00FF2EH·D6	ETU7	00FF2CH·D6]		
	Compare match	FTC7	00FF2EH·D7	ETC7	00FF2CH·D7			

Table 5.10.5.1 Interrupt control registers

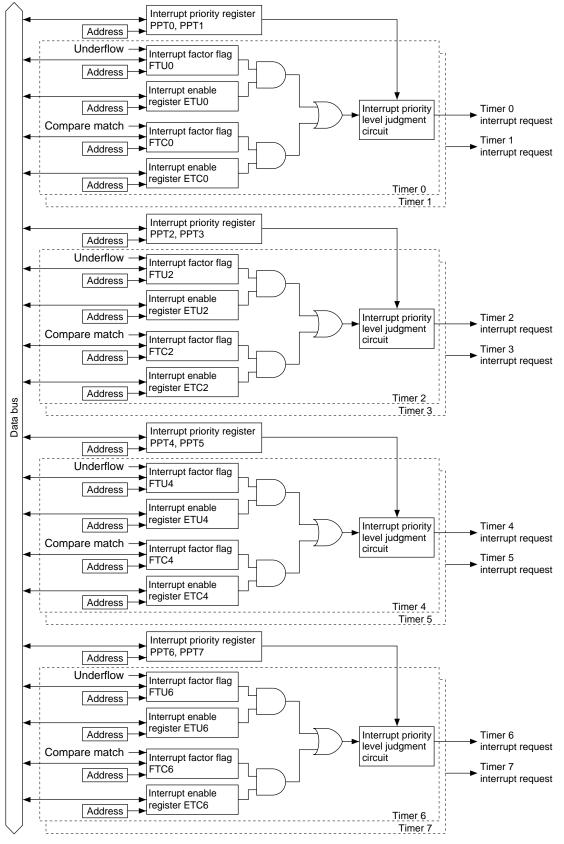


Fig. 5.10.5.1 Configuration of 16-bit programmable timer interrupt circuit

5.10.6 Setting of TOUT output

The 16-bit programmable timer can generate TOUT signals with the underflow and compare match signals of each timer. The TOUT signal generated in the 16-bit programmable timer can be output from the I/O port terminal shown in Table 5.10.6.1 so that a clock is supplied for external devices or it can be used as a PWM waveform output.

Timer	Output clock name	Output terminal							
Timer 0	TOUT0	P14							
Timer 1	TOUT1	P14							
Timer 2	TOUT2	P15							
	TOUT2	P17							
Timer 3	TOUT3	P15							
	TOUT3	P17							

 Table 5.10.6.1
 TOUT output terminal

The TOUT signal rises at the falling edge of the underflow signal and falls at the falling edge of the compare match signal. TOUT is the inverted TOUT signal. Therefore, it is possible to change the frequency and duty ratio of the TOUT signal by setting the reload data register (RDR) and compare data register (CDR).

However, it needs a condition setting: RDR > CDR, $CDR \neq 0$. In the case of $RDR \leq CDR$, TOUT signal is fixed at "1".

The TOUT output can be controlled ON and OFF using the clock output control register PTOUTx of each timer and the TOUT output can be controlled using the inverted clock output control register RPTOUTx of Timer 2 or Timer 3. When PTOUTx (RPTOUTx) is set to "1", the TOUTx (TOUTx) signal is output from the corresponding port terminal, when "0" is set, the port is set for DC

output. When PTOUTx (RPTOUTx) is "1", settings of the I/O control register IOC14/IOC15/IOC17 and data register P14D/P15D/P17D become invalid.

Note: If PTOUT0 and PTOUT1 are set to "1" at the same time, PTOUT1 is effective. Similarly, if PTOUT2 (RPTOUT2) and PTOUT3 (RPTOUT3) are set to "1", PTOUT3 (RPTOUT3) is effective.

In the 16-bit mode, the output is controlled by the control register PTOUT(H) for Timer(H). The clock is output from Timer(H).

Since the TOUTx (TOUTx) signal is generated asynchronously from the register PTOUTx (RPTOUTx), when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

Figure 5.10.6.1 shows the output waveform of TOUT signal.

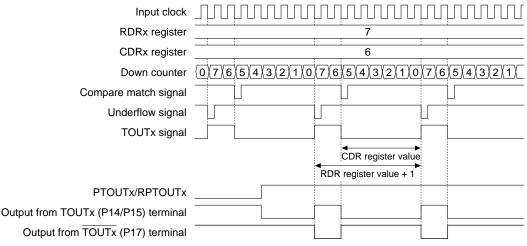


Fig. 5.10.6.1 Output waveform of TOUT signal

5.10.7 Transfer rate setting of serial interface

The underflow signal of Timer 1 can be used to clock the serial interface.

The transfer rate setting in this case is made in the registers PST1X and RDR1X (since only the underflow signal is used as the serial interface clock source, the CDR1X register value does not affect the transfer rates. It can be set to any value).

Since the underflow signal of Timer 1 is divided by 32 in the serial interface, the value set in the register RDR1X which corresponds to the transfer rate is shown in the following expression:

$$RDR1X = \frac{fdiv}{32 \times bps} - 1$$

fdiv: Input clock frequency (setteing of PST1X) bps: Transfer rate

				-	-					
Transfer rate	OSC3 oscillation frequency / Programmable timer settings									
	fosc3 = 2.4	4756 MHz	fosc3 = 3.0	0720 MHz	fosc3 = 3.6864 MHz					
(bps)	PST1X	RDR1X	PST1X	RDR1X	PST1X	RDR1X				
19,200	00H	03H	00H	04H	00H	05H				
9,600	00H	07H	00H	09H	00H	0BH				
4,800	00H	0FH	00H	13H	00H	17H				
2,400	00H	1FH	00H	27H	00H	2FH				
1,200	00H	3FH	00H	4FH	00H	5FH				
600	00H	7FH	00H	9FH	00H	BFH				
300	02H	1FH	03H	09H	01H	BFH				
150	02H	3FH	03H	13H	02H	5FH				

Table 5.10.7.1 Example of transfer rate setting

* Since the underflow signal only is used as the clock source, the CDR1X register value does not affect the transfer rates.

5.10.8 Setting frame frequency for LCD driver

The underflow signal of Timer 5 can be used as the source clock to generate the frame signal for the LCD driver.

The frame frequency is set up using the registers PST5X and RDR5X (since only the underflow signal is used as the source clock, the CDR5X register value does not affect the frame signal. It can be set to any value).

The Timer 5 underflow signal is divided by 128 (for 1/16 or 1/3 duty) or 256 (for 1/8 duty) in the LCD driver, so set a value represented by the following expressions to the register RDR5X.

(for 1/16 or 1/32 duty) $RDR5X = \frac{fdiv}{128 \times fFRM} - 1$

(for 1/8 duty)

$$RDR5X = \frac{fdiv}{256 \times fFRM} - 1$$

fdiv: Input clock frequency (setteing of PST5X) fFRM: Frame frequency (Hz)

5.10.9 Control of programmable timer

Table 5.10.9.1 shows the programmable timer control bits.

Table 5 10 9 10	(a)	<i>Programmable timer control bits</i>
10010 5.10.9.1	u)	i iogrammable iimer control bus

Address	Bit	Name				nction	0	1 1	0	SR	R/W	Comment
00FF14	D7	PRPRT1	Progra	mmable	timer	1 clock co	ntrol	On	Off	0	R/W	
	D6	PST12	Progra		timer	1 division (OSC3)				0	R/W	
	D5	PST11	1 1 1 0	1 0 0 1	0 1 0 1	fosc3 / 1024 fosc3 / 256 fosc3 / 64 fosc3 / 32	fosc1 / 64 fosc1 / 32 fosc1 / 16 fosc1 / 8			0	R/W	
		PST10	0 0 0	1 0 0	0 1 0	fosc3 / 8 fosc3 / 2 fosc3 / 1	fosc1 / 4 fosc1 / 2 fosc1 / 1			0	R/W	
	D3	PRPRT0	Progra	mmable	timer	0 clock con	ntrol	On	Off	0	R/W	
	D2	PST02	-	$\frac{\text{PST01}}{1}$			ratio (OSC1) fosc1 / 128			0	R/W	
	D1	PST01	1 1 1 0	1 0 0 1	0 1 0 1	fosc3 / 1024 fosc3 / 256 fosc3 / 64 fosc3 / 32	fosc1 / 64 fosc1 / 32 fosc1 / 16 fosc1 / 8			0	R/W	
	D0	PST00	0 0 0	1 0 0	0 1 0	fosc3 / 8 fosc3 / 8 fosc3 / 2 fosc3 / 1	fosc1 / 8 fosc1 / 4 fosc1 / 2 fosc1 / 1			0	R/W	
00FF15	D7	PRPRT3	Progra	mmable	timer	3 clock con	ntrol	On	Off	0	R/W	
		PST32	Progra		timer	3 division (OSC3)				0	R/W	
	D5	PST31	1 1 1	1 0 0	0 1 0	fosc3 / 1024 fosc3 / 256 fosc3 / 64	fosc1 / 32 fosc1 / 16			0	R/W	
	D4	PST30	0 0 0 0	1 1 0 0	1 0 1 0	fosc3 / 32 fosc3 / 8 fosc3 / 2 fosc3 / 1	fosc1 / 8 fosc1 / 4 fosc1 / 2 fosc1 / 1			0	R/W	
	D3	PRPRT2	Progra	mmable	timer	2 clock con	ntrol	On	Off	0	R/W	
		PST22	Progra		timer	2 division (OSC3)				0	R/W	
	D1	PST21	1 1 1	1 0 0	0 1 0	fosc3 / 1024 fosc3 / 256 fosc3 / 64	fosc1 / 64 fosc1 / 32 fosc1 / 16			0	R/W	
	D0	PST20	0 0 0 0	1 1 0 0	1 0 1 0	fosc3 / 32 fosc3 / 8 fosc3 / 2 fosc3 / 1	fosc1 / 8 fosc1 / 4 fosc1 / 2 fosc1 / 1			0	R/W	
00FF18	D7	PRPRT5	Progra	mmable	timer	5 clock co	ntrol	On	Off	0	R/W	
		PST52	Progra		timer	5 division (OSC3)				0	R/W	
	D5	PST51	1 1 1	1 0 0	0 1 0	fosc3 / 1024 fosc3 / 256 fosc3 / 64	fosc1 / 64 fosc1 / 32 fosc1 / 16			0	R/W	
	D4	PST50	0 0 0 0	1 1 0 0	1 0 1 0	fosc3 / 32 fosc3 / 8 fosc3 / 2 fosc3 / 1	fosc1 / 8 fosc1 / 4 fosc1 / 2 fosc1 / 1			0	R/W	
	D3	PRPRT4		-		4 clock con		On	Off	0	R/W	
-		PST42	Progra PST42	mmable PST41	timer PST40	4 division (OSC3)	ratio (OSC1)		011	0	R/W	
	D1	PST41	1 1 1	1 1 0 0	1 0 1 0	fosc3 / 4096 fosc3 / 1024 fosc3 / 256 fosc3 / 64	fosc1 / 128 fosc1 / 64 fosc1 / 32 fosc1 / 16			0	R/W	
	D0	PST40	0 0 0	1 1 0	1 0 1	fosc3 / 32 fosc3 / 8 fosc3 / 2	fosc1 / 8 fosc1 / 4 fosc1 / 2			0	R/W	

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF19		PRPRT7		On	Off	0	R/W	Comment
001113		PST72	Programmable timer 7 division ratio	011	011	0	R/W	-
	00	10172	PST72 PST71 PST70 (OSC3) (OSC1)			0		
			1 1 1 fosc3 / 4096 fosc1 / 128					
	D5	PST71	1 1 0 fosc3 / 1024 fosc1 / 64 1 0 1 fosc3 / 256 fosc1 / 32			0	R/W	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
			0 1 1 fosc3 / 32 fosc1 / 8					
	D4	PST70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	D3	PRPRT6	Programmable timer 6 clock control	On	Off	0	R/W	
		PST62	Programmable timer 6 division ratio			0	R/W	
			PST62 PST61 PST60 (OSC3) (OSC1)					
			1 1 1 fosc3 / 4096 fosc1 / 128 1 1 0 fosc3 / 1024 fosc1 / 64					
	D1	PST61	1 0 1 6 63c3 / 1024 103c1 / 04 1 0 1 63c3 / 256 63c1 / 32			0	R/W	
			1 0 0 fosc3 / 64 fosc1 / 16					
	D0	PST60	0 1 1 fosc3/32 fosc1/8 0 1 0 fosc3/8 fosc1/4			0	R/W	
			0 0 1 fosc3 / 2 fosc1 / 2			-		
			0 0 0 fosc3 / 1 fosc1 / 1					
00FF17	D7	-		-	-	_		Constantly "0" when
	D6	-	-	-	-	_		being read
	D5	-	-	-	-	_		
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	PRTF3	Programmable timer 3 source clock selection	fosci	fosc3	0	R/W	_
		PRTF2	Programmable timer 2 source clock selection	fosc1	fosc3	0	R/W	
	D1	PRTF1	Programmable timer 1 source clock selection	fosc1	fosc3	0	R/W	
	D0	PRTF0	Programmable timer 0 source clock selection	fosci	fosc3	0	R/W	
00FF1B	D7	_	_	-	-	-		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	-	_	-	-	-		
	D4	1	_	-	-	-		
	D3	PRTF7	Programmable timer 7 source clock selection	fosc1	fosc3	0	R/W	
	D2	PRTF6	Programmable timer 6 source clock selection	fosc1	fosc3	0	R/W	
	D1	PRTF5	Programmable timer 5 source clock selection	fosc1	fosc3	0	R/W	
	D0	PRTF4	Programmable timer 4 source clock selection	fosc1	fosc3	0	R/W	
00FF21	D7	_	-	-	-	_		Constantly "0" when
	D6	-	-	-	-	_		being read
	D5	PPT3	Programmable timer 3–2 interrupt	PPT3 PPT	*	0	R/W	
	D4	PPT2	priority register	$\frac{PPT1}{1}$ $\frac{PPT}{1}$	$\frac{0}{\text{Level }3}$			
	D3	PPT1	Programmable timer 1–0 interrupt	1 0	Level 2	0	R/W	
	D2	PPT0	priority register	$ \begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array} $	Level 1 Level 0			
	D1	_	_	-	-	_		Constantly "0" when
	D0	_	_	-	_	_		being read
00FF2A	D7	-	-	_	-	_		Constantly "0" when
	D6	_	_	_	-	_		being read
	D5	_	_	_	_	_		1
	D4	_	_	_	_	_		1
		PPT7	Programmable timer 7–6 interrupt	PPT7 PPT		0	R/W	
		PPT6	priority register	$\frac{PPT5}{1}$ $\frac{PPT}{1}$	4 level 3			
		PPT5	Programmable timer 5–4 interrupt	1 0	Level 2	0	R/W	1
		PPT4	priority register	0 1	Level 1			
L	50		Priority register	0 0	Level 0		1	

Table 5.10.9.1(b) Programmable timer control bits

Address	Bit	Name	Table 5.10.9.1(c) Programmabl Function	1	0	SR	R/W	Comment
00FF25	D7	ETC3	PTM3 compare match interrupt enable					
		ETU3	PTM3 underflow interrupt enable					
		ETC2	PTM2 compare match interrupt enable					
		ETU2	PTM2 underflow interrupt enable	Interrupt	Interrupt			
		ETC1	PTM1 compare match interrupt enable	enable	disable	0	R/W	
		ETU1	PTM1 underflow interrupt enable		disuble			
		ETC0	PTM0 compare match interrupt enable					
		ETU0	PTM0 underflow interrupt enable					
00FF29		FTC3	PTM3 compare match interrupt factor flag	(R)	(R)			
		FTU3	PTM3 underflow interrupt factor flag	Interrupt	No interrupt			
		FTC2	PTM2 compare match interrupt factor flag	factor is	factor is			
		FTU2	PTM2 underflow interrupt factor flag	generated	generated			
		FTC1	PTM1 compare match interrupt factor flag			0	R/W	
		FTU1	PTM1 underflow interrupt factor flag	(W)	(W)			
		FTC0	PTM0 compare match interrupt factor flag	Reset	No operation			
		FTU0	PTM0 underflow interrupt factor flag	Keset	No operation			
00FF2C		ETC7	PTM7 compare match interrupt enable					
001120		ETU7	PTM7 underflow interrupt enable					
		ETC6	PTM6 compare match interrupt enable					
		ETU6	PTM6 underflow interrupt enable	Intomout	Intomport			
		ETC5		Interrupt	Interrupt	0	R/W	
		ETU5	PTM5 compare match interrupt enable PTM5 underflow interrupt enable	enable	disable			
		ETC4						
		ETU4 ETU4	PTM4 compare match interrupt enable					
00FF2E		FTC7	PTM4 underflow interrupt enable	(D)	(D)			
00FF2L		FTU7	PTM7 compare match interrupt factor flag	(R)	(R)			
		FTC6	PTM7 underflow interrupt factor flag	Interrupt	No interrupt			
			PTM6 compare match interrupt factor flag	factor is	factor is			
		FTU6	PTM6 underflow interrupt factor flag	generated	generated	0	R/W	
		FTC5	PTM5 compare match interrupt factor flag	an b	(TD)			
		FTU5	PTM5 underflow interrupt factor flag	(W)	(W)			
		FTC4	PTM4 compare match interrupt factor flag	Reset	No operation			
005500		FTU4	PTM4 underflow interrupt factor flag			0	DAV	
00FF30		MODE16_A	PTM0–1 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	-
		PTNREN_A	External clock 0 noise rejecter selection	Enable	Disable	0	R/W	
	D5	-		-	-	-	DAV	"0" when being read
	D4		R/W register	1	0	0	R/W	Reserved register
			PTM0 clock output control	On	Off	0	R/W	-
			PTM0 Run/Stop control	Run	Stop	0	R/W	
			PTM0 preset	Preset	No operation	0	W	"0" when being read
00550		CKSEL0	PTM0 input clock selection	External clock	Internal clock	0	R/W	
00FF31	D7	-	-	-	-	-		Constantly "0" when
	D6	-	-	-	-	-		being read
	D5	-	-	-	-	-		
	D4	-	R/W register	1	0	0	R/W	Reserved register
			PTM1 clock output control	On	Off	0	R/W	
			PTM1 Run/Stop control	Run	Stop	0	R/W	
		PSET1	PTM1 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL1	PTM1 input clock selection	External clock	Internal clock	0	R/W	

Table 5.10.9.1(c) Programmable timer control bits

Address	Bit	Name	Table 5.10.9.1(d) Programmable Function Function	1	0	SR	R/W	Comment
00FF32	D7	RDR07	PTM0 reload data D7 (MSB)					
	D6	RDR06	PTM0 reload data D6					
	D5	RDR05	PTM0 reload data D5					
	D4	RDR04	PTM0 reload data D4	*** 1	Ţ	1	DAV	
	D3	RDR03	PTM0 reload data D3	High	Low	1	R/W	
	D2	RDR02	PTM0 reload data D2					
	D1	RDR01	PTM0 reload data D1					
	D0	RDR00	PTM0 reload data D0 (LSB)					
00FF33	D7	RDR17	PTM1 reload data D7 (MSB)					
	D6	RDR16	PTM1 reload data D6					
	D5	RDR15	PTM1 reload data D5					
	D4	RDR14	PTM1 reload data D4	TT: 1	,	1	DAV	
	D3	RDR13	PTM1 reload data D3	High	Low	1	R/W	
	D2	RDR12	PTM1 reload data D2					
	D1	RDR11	PTM1 reload data D1					
	D0	RDR10	PTM1 reload data D0 (LSB)					
00FF34	D7	CDR07	PTM0 compare data D7 (MSB)					
	D6	CDR06	PTM0 compare data D6					
	D5	CDR05	PTM0 compare data D5					
	D4	CDR04	PTM0 compare data D4	High	Low	0	R/W	
	D3	CDR03	PTM0 compare data D3	High	Low		K/W	
	D2	CDR02	PTM0 compare data D2					
	D1	CDR01	PTM0 compare data D1					
	D0	CDR00	PTM0 compare data D0 (LSB)					
00FF35	D7	CDR17	PTM1 compare data D7 (MSB)					
	D6	CDR16	PTM1 compare data D6					
	D5	CDR15	PTM1 compare data D5					
	D4	CDR14	PTM1 compare data D4	High	Low	0	R/W	
	D3	CDR13	PTM1 compare data D3	nigii	LOW			
	D2	CDR12	PTM1 compare data D2					
	D1	CDR11	PTM1 compare data D1					
	D0	CDR10	PTM1 compare data D0 (LSB)					
00FF36	D7	PTM07	PTM0 data D7 (MSB)					
	D6	PTM06	PTM0 data D6					
		PTM05	PTM0 data D5					
			PTM0 data D4	High	Low	1	R	
		PTM03	PTM0 data D3	mgn	Low			
		PTM02	PTM0 data D2					
		PTM01	PTM0 data D1					
		PTM00	PTM0 data D0 (LSB)			<u> </u>		
00FF37		PTM17	PTM1 data D7 (MSB)					
		PTM16	PTM1 data D6					
		PTM15	PTM1 data D5					
	D4	PTM14	PTM1 data D4	High	Low	1	R	
		PTM13	PTM1 data D3		2011	.		
		PTM12	PTM1 data D2					
		PTM11	PTM1 data D1					
	D0	PTM10	PTM1 data D0 (LSB)					

Table 5.10.9.1(d) Programmable timer control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF38	D7	MODE16_B	PTM2–3 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_B	External clock 1 noise rejecter selection	Enable	Disable	0	R/W	
	D5	_	-	-	-	_		"0" when being read
	D4	RPTOUT2	PTM2 inverted clock output control	On	Off	0	R/W	
			PTM2 clock output control	On	Off	0	R/W	
	D2	PTRUN2	PTM2 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET2	PTM2 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL2	PTM2 input clock selection	External clock	Internal clock	0	R/W	
00FF39	D7	-	_	-	-	-		Constantly "0" when
	D6	-	_	-	-	_		being read
	D5	-	_	-	-	-		
	D4	RPTOUT3	PTM3 inverted clock output control	On	Off	0	R/W	
	D3	PTOUT3	PTM3 clock output control	On	Off	0	R/W	
	D2	PTRUN3	PTM3 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET3	PTM3 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL3	PTM3 input clock selection	External clock	Internal clock	0	R/W	
00FF3A	D7	RDR27	PTM2 reload data D7 (MSB)					
	D6	RDR26	PTM2 reload data D6					
	D5	RDR25	PTM2 reload data D5		Low	1	R/W	
	D4	RDR24	PTM2 reload data D4	High				
		RDR23	PTM2 reload data D3	mgn				
		RDR22	PTM2 reload data D2	oad data D1				
		RDR21	PTM2 reload data D1					
		RDR20	PTM2 reload data D0 (LSB)					
00FF3B		RDR37	PTM3 reload data D7 (MSB)					
		RDR36	PTM3 reload data D6					
		RDR35	PTM3 reload data D5				R/W	
		RDR34	PTM3 reload data D4	High	Low	1		
		RDR33	PTM3 reload data D3	Ū				
		RDR32	PTM3 reload data D2					
		RDR31	PTM3 reload data D1					
005500		RDR30	PTM3 reload data D0 (LSB)					
00FF3C		CDR27	PTM2 compare data D7 (MSB)					
		CDR26	PTM2 compare data D5					
			PTM2 compare data D5					
			PTM2 compare data D4	High	Low	0	R/W	
		CDR23 CDR22	PTM2 compare data D3					
		CDR22	PTM2 compare data D2					
		CDR20	PTM2 compare data D1 PTM2 compare data D0 (LSB)					
00FF3D		CDR37	PTM3 compare data D0 (LSB)					
		CDR36	PTM3 compare data D7 (M3D)					
		CDR35	PTM3 compare data D5					
		CDR34	PTM3 compare data D4					
		CDR33	PTM3 compare data D3	High	Low	0	R/W	
		CDR32	PTM3 compare data D2					
		CDR31	PTM3 compare data D1					
		CDR30	PTM3 compare data D0 (LSB)					
	20	55100	r mis compare data D0 (LDD)				1	

Table 5.10.9.1(e) Programmable timer control bits

Address	Bit	Name	Table 5.10.9.1(f) Programmable Function	1	0	SR	R/W	Comment
00FF3E	D7	PTM27	PTM2 data D7 (MSB)					
	D6	PTM26	PTM2 data D6					
	D5	PTM25	PTM2 data D5					
	D4	PTM24	PTM2 data D4					
	D3	PTM23	PTM2 data D3	High	Low	1	R	
	D2	PTM22	PTM2 data D2					
	D1	PTM21	PTM2 data D1					
	D0	PTM20	PTM2 data D0 (LSB)					
00FF3F	D7	PTM37	PTM3 data D7 (MSB)					
	D6	PTM36	PTM3 data D6					
	D5	PTM35	PTM3 data D5					
	D4	PTM34	PTM3 data D4					
	D3	PTM33	PTM3 data D3	High	Low	1	R	
		PTM32	PTM3 data D2					
		PTM31	PTM3 data D1					
		PTM30	PTM3 data D0 (LSB)					
00FFB0	_		PTM4–5 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
			External clock 2 noise rejecter selection	Enable	Disable	0	R/W	
	D5	_		_	_	_		"0" when being read
	D4	_	R/W register	1	0	0	R/W	Reserved register
	D3	_	R/W register	1	0	0	R/W	
	D2	PTRUN4	PTM4 Run/Stop control	Run	Stop	0	R/W	
			PTM4 preset	Preset	No operation	0	W	"0" when being read
			PTM4 input clock selection	External clock		0	R/W	
00FFB1	D7	-		_	_	_		Constantly "0" when
	D6	_	_	_	_	_		being read
	D5	_	_	_	_	_		
	D4	_	R/W register	1	0	0	R/W	Reserved register
	D3	_	R/W register	1	0	0	R/W	
	D2	PTRUN5	PTM5 Run/Stop control	Run	Stop	0	R/W	
			PTM5 preset	Preset	No operation	0	W	"0" when being read
			PTM5 input clock selection	External clock	-	0	R/W	
00FFB2			PTM4 reload data D7 (MSB)			-		
			PTM4 reload data D6					
			PTM4 reload data D5					
	D4		PTM4 reload data D4					
	D3	RDR43	PTM4 reload data D3	High	Low	1	R/W	
		RDR42	PTM4 reload data D2					
		RDR41	PTM4 reload data D1					
			PTM4 reload data D0 (LSB)					
00FFB3		RDR57	PTM5 reload data D7 (MSB)					
		RDR56	PTM5 reload data D6					
		RDR55	PTM5 reload data D5					
		RDR54	PTM5 reload data D4					
		RDR53	PTM5 reload data D3	High	Low	1	R/W	
		RDR52	PTM5 reload data D2					
	D1 F	RDR51	PTM5 reload data D1					
			PTM5 reload data D0 (LSB)					
	50	1.121.00						

Table 5.10.9.1(f) Programmable timer control bits

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Programmable Timer)

Address	Bit	Name	<i>Table 5.10.9.1(g) Programmabl</i> Function	1	0	SR	R/W	Comment
00FFB4	D7	CDR47	PTM4 compare data D7 (MSB)					
	D6	CDR46	PTM4 compare data D6					
	D5	CDR45	PTM4 compare data D5					
		CDR44	PTM4 compare data D4					
		CDR43	PTM4 compare data D3	High	Low	0	R/W	
		CDR42	PTM4 compare data D2					
		CDR41	PTM4 compare data D1					
		CDR40	PTM4 compare data D0 (LSB)					
00FFB5	_	CDR57	PTM5 compare data D7 (MSB)					
001120		CDR56	PTM5 compare data D6					
		CDR55	PTM5 compare data D5					
		CDR54	PTM5 compare data D4					
		CDR53		High	Low	0	R/W	
		CDR52	PTM5 compare data D3					
			PTM5 compare data D2					
		CDR51	PTM5 compare data D1					
005500		CDR50	PTM5 compare data D0 (LSB)					
00FFB6		PTM47	PTM4 data D7 (MSB)					
		PTM46	PTM4 data D6					
		PTM45	PTM4 data D5					
		PTM44	PTM4 data D4	High	Low	1	R	
		PTM43	PTM4 data D3					
	D2	PTM42	PTM4 data D2					
	D1	PTM41	PTM4 data D1					
	D0	PTM40	PTM4 data D0 (LSB)					
00FFB7	D7	PTM57	PTM5 data D7 (MSB)					
	D6	PTM56	PTM5 data D6					
	D5	PTM55	PTM5 data D5					
	D4	PTM54	PTM5 data D4	High	Low	1	R	
	D3	PTM53	PTM5 data D3		2011	•		
	D2	PTM52	PTM5 data D2					
	D1	PTM51	PTM5 data D1					
	D0	PTM50	PTM5 data D0 (LSB)					
00FFB8	D7	MODE16_D	PTM6–7 8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D6	PTNREN_D	External clock 3 noise rejecter selection	Enable	Disable	0	R/W	
	D5	-	-	-	-	_		"0" when being read
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	-	R/W register	1	0	0	R/W	
	D2	PTRUN6	PTM6 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET6	PTM6 preset	Preset	No operation	0	W	"0" when being read
	D0	CKSEL6	PTM6 input clock selection	External clock	Internal clock	0	R/W	
00FFB9	D7	-	-	-	-	_		Constantly "0" when
	D6	-	-	-	-	-		being read
	D5	-		-	-	-		
	D4	-	R/W register	1	0	0	R/W	Reserved register
	D3	_	R/W register	1	0	0	R/W	
	D2	PTRUN7	PTM7 Run/Stop control	Run	Stop	0	R/W	
	D1	PSET7	PTM7 preset	Preset	No operation	0	W	"0" when being read
			PTM7 input clock selection	External clock	-	0	R/W	-

Table 5.10.9.1(g)	Programmable	timer	control	bits

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Programmable Timer)

Address	Bit	Name	Table 5.10.9.1(h) Programmable	1	0	SR	R/W	Comment
00FFBA	D7	RDR67	PTM6 reload data D7 (MSB)					
	D6	RDR66	PTM6 reload data D6					
	D5	RDR65	PTM6 reload data D5					
	D4	RDR64	PTM6 reload data D4		_			
	D3	RDR63	PTM6 reload data D3	High	Low	1	R/W	
	D2	RDR62	PTM6 reload data D2					
	D1	RDR61	PTM6 reload data D1					
	D0	RDR60	PTM6 reload data D0 (LSB)					
00FFBB	D7	RDR77	PTM7 reload data D7 (MSB)					
	D6	RDR76	PTM7 reload data D6					
	D5	RDR75	PTM7 reload data D5					
	D4	RDR74	PTM7 reload data D4					
	D3	RDR73	PTM7 reload data D3	High	Low	1	R/W	
	D2	RDR72	PTM7 reload data D2					
	D1	RDR71	PTM7 reload data D1					
	D0	RDR70	PTM7 reload data D0 (LSB)					
00FFBC	D7	CDR67	PTM6 compare data D7 (MSB)					
	D6	CDR66	PTM6 compare data D6					
	D5	CDR65	PTM6 compare data D5					
	D4	CDR64	PTM6 compare data D4		_			
	D3	CDR63	PTM6 compare data D3	High	Low	0	R/W	
	D2		PTM6 compare data D2					
	D1	CDR61	PTM6 compare data D1					
	D0	CDR60	PTM6 compare data D0 (LSB)					
00FFBD	D7	CDR77	PTM7 compare data D7 (MSB)					
	D6	CDR76	PTM7 compare data D6					
	D5	CDR75	PTM7 compare data D5					
	D4	CDR74	PTM7 compare data D4					
	D3	CDR73	PTM7 compare data D3	High	Low	0	R/W	
	D2	CDR72	PTM7 compare data D2					
	D1	CDR71	PTM7 compare data D1					
	D0	CDR70	PTM7 compare data D0 (LSB)					
00FFBE	D7	PTM67	PTM6 data D7 (MSB)					
	D6	PTM66	PTM6 data D6			1		
	D5	PTM65	PTM6 data D5					
	D4	PTM64	PTM6 data D4					
	D3	PTM63	PTM6 data D3	High	Low	1	R	
	D2	PTM62	PTM6 data D2					
		PTM61	PTM6 data D1					
		PTM60	PTM6 data D0 (LSB)			1		
00FFBF		PTM77	PTM7 data D7 (MSB)					
		PTM76	PTM7 data D6					
		PTM75	PTM7 data D5					
	D4	PTM74	PTM7 data D4					
	D3	PTM73	PTM7 data D3	High	Low	1	R	
		PTM72	PTM7 data D2					
		PTM71	PTM7 data D1					
		PTM70	PTM7 data D0 (LSB)					
	- •				1	1	1	

Table 5.10.9.1(h) Programmable timer control bits

MODE16_A: 00FF30H•D7 MODE16_B: 00FF38H•D7 MODE16_C: 00FFB0H•D7 MODE16_D: 00FFB8H•D7

Selects either the 8/16 bit mode.

MODE16_A, MODE16_B, MODE16_C and MODE16_D are the 8/16-bit mode selection registers corresponding to Timers 0 and 1, Timers 2 and 3, Timers 4 and 5, and Timers 6 and 7, respectively. Select whether Timer(L) and Timer(H) are used as 2 channels independent 8-bit timers or as 1 channel combined 16-bit timer. When "0" is written to the MODE16_A (-D) register, 8-bit × 2 channels is selected and when "1" is written, 16-bit × 1 channel is selected. At initial reset, this register is set to "0" (8-bit × 2 channels).

PTNREN_A: 00FF30H•D6 PTNREN_B: 00FF38H•D6 PTNREN_C: 00FFB0H•D6 PTNREN_D: 00FFB8H•D6

Enables/disables the noise rejecter in the external clock input circuit.

When "1" is written: Enabled When "0" is written: Disabled Reading: Valid

Writing "1" to PTNREN_A (-D) enables the noise rejecter for the external clock EXCL0 (-3). The noise rejecter regards pulses less than a 16/fosc1 seconds in width as noise and rejects them.

When PTNREN_A (–D) is "0", the external clock bypasses the noise rejecter.

At initial reset, this register is set to "0" (disabled).

CKSEL0: 00FF30H•D0 CKSEL1: 00FF31H•D0 CKSEL2: 00FF38H•D0 CKSEL3: 00FF39H•D0 CKSEL4: 00FFB0H•D0 CKSEL5: 00FFB1H•D0 CKSEL6: 00FFB8H•D0 CKSEL7: 00FFB9H•D0

Selects the input clock for each timer.

When "1" is written:External clockWhen "0" is written:Internal clockReading:Valid

The clock to be input to each timer is selected from either the external clock (input signal of input port) or the internal clock (prescaler output clock). When "0" is written to the CKSELx register, the internal clock (prescaler output INCLx) is selected as the input clock for Timer x.

When "1" is written, the external clock (EXCL0 (K04 input) for Timers 0 and 1, EXCL1 (K05 input) for Timers 2 and 3, EXCL2 (K06 input) for Timers 4 and 5, EXCL3 (K07 input) for Timers 6 and 7) is selected and the timer functions as an event counter.

In the 16-bit mode, the setting of the CKSEL(H) register is invalid.

At initial reset, this register is set to "0" (internal clock).

PRTF0: 00FF17H•D0 PRTF1: 00FF17H•D1 PRTF2: 00FF17H•D2 PRTF3: 00FF17H•D3 PRTF4: 00FF1BH•D0 PRTF5: 00FF1BH•D1 PRTF6: 00FF1BH•D2 PRTF7: 00FF1BH•D3

Selects the source clock for each timer (when internal clock is used).

When "1" is written: fosc1 When "0" is written: fosc3 Reading: Valid

When "1" is written to the PRTFx register, the OSC1 clock is selected as the source clock for Timer x.

When "0" is written, the OSC3 clock is selected. At initial reset, this register is set to "0" (fosc3).

PST00-PST02: 00FF14H•D0-D2 PST10-PST12: 00FF14H•D4-D6 PST20-PST22: 00FF15H•D0-D2 PST30-PST32: 00FF15H•D4-D6 PST40-PST42: 00FF18H•D0-D2 PST50-PST52: 00FF18H•D4-D6 PST60-PST62: 00FF19H•D0-D2 PST70-PST72: 00FF19H•D4-D6

Selects the input clock for each timer (when internal clock is used).

It can be selected from 8 types of division ratio shown in Tables 5.10.9.1(a) and (b). This register can also be read.

At initial reset, this register is set to "0".

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Programmable Timer)

<i>PRPRT0: 00FF14H•D3</i>
<i>PRPRT1: 00FF14H•D7</i>
<i>PRPRT2: 00FF15H•D3</i>
<i>PRPRT3: 00FF15H•D7</i>
PRPRT4: 00FF18H•D3
<i>PRPRT5: 00FF18H•D7</i>
PRPRT6: 00FF19H•D3
<i>PRPRT7: 00FF19H•D7</i>

Controls the clock supply of each timer (when internal clock is used).

When "1" is written: ON When "0" is written: OFF Reading: Valid

By writing "1" to the PRPRTx register, the clock that is selected with the PSTx register is output to Timer x.

When "0" is written, the clock is not output. At initial reset, the this register is set to "0" (OFF).

RDR00-RDR07: 00FF32H RDR10-RDR17: 00FF33H RDR20-RDR27: 00FF3AH RDR30-RDR37: 00FF3BH RDR40-RDR47: 00FFB2H RDR50-RDR57: 00FFB3H RDR60-RDR67: 00FFBAH RDR70-RDR77: 00FFBBH

Sets the initial value for the counter of each timer. Each counter loads the reload data set in this register and counts using it as the initial value. The reload data set in this register is loaded into the counter when "1" is written to PSETx, or when a counter underflow occurs. This register can also be read. At initial reset, this register is set to "FFH".

CDR00-CDR07: 00FF34H CDR10-CDR17: 00FF35H CDR20-CDR27: 00FF3CH CDR30-CDR37: 00FF3DH CDR40-CDR47: 00FFB4H CDR50-CDR57: 00FFB5H CDR60-CDR67: 00FFBCH CDR70-CDR77: 00FFBDH

Sets the compare data for each timer. The timer compares the data set in this register with the corresponding counter data, and outputs the compare match signals when they are the same. The compare match signal controls the interrupt and the TOUT output waveform. This register can also be read. At initial reset, this register is set to "00H".

<i>PTM00–PTM07: 00FF36H</i>
<i>PTM10–PTM17: 00FF37H</i>
<i>PTM20–PTM27: 00FF3EH</i>
<i>PTM30–PTM37: 00FF3FH</i>
<i>PTM40–PTM47: 00FFB6H</i>
<i>PTM50–PTM57: 00FFB7H</i>
PTM60-PTM67: 00FFBEH
PTM70-PTM77: 00FFBFH

The counter data of each timer can be read. Data can be read at any given time. However, in the 16-bit mode, reading PTM(L) does not latch the Timer(H) counter data in PTM(H). To avoid generating a borrow from Timer(L) to Timer(H), read the counter data after stopping the timer by writing "0" to PTRUN(L).

PTMx can only be read, so writing operation is invalid.

At initial reset, PTMx is set to "FFH".

PSET0: 00FF30H•D1 PSET1: 00FF31H•D1 PSET2: 00FF38H•D1 PSET3: 00FF39H•D1 PSET4: 00FFB0H•D1 PSET5: 00FFB1H•D1 PSET6: 00FFB8H•D1 PSET7: 00FFB9H•D1

Presets the reload data to the counter.

When "1" is written: Preset When "0" is written: Invalid Reading: Always "0"

Writing "1" to PSETx presets the reload data in the RDRx register to the counter of Timer x. When the counter of Timer x is in RUN status, the counter restarts immediately after presetting. In the case of STOP status, the counter maintains the preset data.

No operation results when "0" is written. In the 16-bit mode, writing "1" to PSET(H) is invalid because 16-bit data is preset by PSET(L) only.

PSETx is only for writing, and it is always "0" during reading. *PTRUN0: 00FF30H•D2 PTRUN1: 00FF31H•D2 PTRUN2: 00FF38H•D2 PTRUN3: 00FF39H•D2 PTRUN4: 00FFB0H•D2 PTRUN5: 00FFB1H•D2 PTRUN6: 00FFB8H•D2 PTRUN7: 00FFB9H•D2*

Controls the RUN/STOP of the counter.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The counter of Timer x starts down-counting by writing "1" to the PTRUNx register and stops by writing "0".

In STOP status, the counter data is maintained until it is preset or the counter restarts. When STOP status changes to RUN status, the counter resumes counting from the data maintained. In the 16-bit mode, the timers are controlled with the PTRUN(L) register, and the PTRUN(H) register is fixed at "0".

At initial reset, this register is set to "0" (STOP).

PTOUT0: 00FF30H•D3 PTOUT1: 00FF31H•D3 PTOUT2: 00FF38H•D3 PTOUT3: 00FF39H•D3

Controls the output of the TOUT signal.

When "1" is written:TOUT signal outputWhen "0" is written:DC outputReading:Valid

The PTOUTx is the output control register for the TOUTx signal (Timer x output clock). When PTOUT0 or PTOUT1 is set to "1", the TOUT0 or TOUT1 signal is output from the P14 port terminal. When PTOUT2 or PTOUT3 is set to "1", the TOUT2 or TOUT3 signal is output from the P15 port terminal. When "0" is set, P14/P15 is set for DC output.

At this time, settings of the I/O control register IOC14/IOC15 and data register P14D/P15D become invalid.

In the 16-bit mode, the timers are controlled with the PTOUT(H) register, and the PTOUT(L) register is fixed at "0".

At initial reset, this register is set to "0" (DC output).

Note: If PTOUT0 and PTOUT1 are set to "1" at the same time, PTOUT1 is effective. Similarly, if PTOUT2 and PTOUT3 are set to "1", PTOUT3 is effective. Furthermore, if the programmable timer is set in 16-bit mode, the TOUT0 and TOUT2 signals cannot be output.

RPTOUT2: 00FF38H•D4 RPTOUT3: 00FF39H•D4

Controls the output of the $\overline{\text{TOUT}}$ signal.

When "1" is written:TOUT signal outputWhen "0" is written:DC outputReading:Valid

The RPTOUTx is the output control register for the TOUTx signal (Timer x inverted output clock). When RPTOUT2 or RPTOUT3 is set to "1", the TOUT2 or TOUT3 signal is output from the P17 port terminal. When "0" is set, P17 is set for DC output.

At this time, settings of the I/O control register IOC17 and data register P17D become invalid. In the 16-bit mode, the timers are controlled with the RPTOUT3 register, and the RPTOUT2 register is fixed at "0".

At initial reset, this register is set to "0" (DC output).

Note: If RPTOUT2 and RPTOUT3 are set to "1" at the same time, RPTOUT3 is effective.

PPT0, PPT1: 00FF21H•D2, D3 PPT2, PPT3: 00FF21H•D4, D5 PPT4, PPT5: 00FF2AH•D0, D1 PPT6, PPT7: 00FF2AH•D2, D3

Sets the priority level of the programmable timer interrupt.

PPT0–PPT1, PPT2–PPT3, PPT4–PPT5, and PPT6– PPT7 are the interrupt priority register corresponding to Timers 0–1, Timers 2–3, Timers 4–

5, and Timers 6–7, respectively.

Table 5.10.9.2 shows the interrupt priority level which can be set by this register.

Table 5.10.9.2	Interrupt priority	level settings
----------------	--------------------	----------------

	1 1	. 0
PPT7	PPT6	
PPT5	PPT4	Interrupt priority (loy of
PPT3	PPT2	Interrupt priority level
PPT1	PPT0	
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Programmable Timer)

ETU0: 00FF25H•D0	FTU0: 00FF29H•D0
ETU1: 00FF25H•D2	FTU1: 00FF29H•D2
ETU2: 00FF25H•D4	FTU2: 00FF29H•D4
ETU3: 00FF25H•D6	FTU3: 00FF29H•D6
ETU4: 00FF2CH•D0	FTU4: 00FF2EH•D0
ETU5: 00FF2CH•D2	<i>FTU5: 00FF2EH•D2</i>
ETU6: 00FF2CH•D4	FTU6: 00FF2EH•D4
ETU7: 00FF2CH•D6	FTU7: 00FF2EH•D6

Enables or disables the underflow interrupt generation to the CPU.

When "1" is written: Interrupt is enabledWhen "0" is written: Interrupt is disabledReading:Valid

The ETUx register is the interrupt enable register corresponding to the underflow interrupt factor of Timer x.

Interrupt in which the ETUx register is set to "1" is enabled, and the others in which the ETUx register is set to "0" are disabled.

In the 16-bit mode, the setting of the ETU(L) is invalid.

At initial reset, this register is set to "0" (interrupt is disabled).

ETC0: 00FF25H•D1 ETC1: 00FF25H•D3 ETC2: 00FF25H•D5 ETC3: 00FF25H•D7 ETC4: 00FF2CH•D1 ETC5: 00FF2CH•D3 ETC6: 00FF2CH•D5 ETC7: 00FF2CH•D7

Enables or disables the compare match interrupt generation to the CPU.

When "1" is written: Interrupt is enabledWhen "0" is written: Interrupt is disabledReading:Valid

The ETCx register is the interrupt enable register corresponding to the compare match interrupt factor of Timer x.

Interrupt in which the ETCx register is set to "1" is enabled, and the others in which the ETCx register is set to "0" are disabled.

In the 16-bit mode, the setting of the ETC(L) is invalid.

At initial reset, this register is set to "0" (interrupt is disabled).

FTU6: 00FF2EH•D4FTU7: 00FF2EH•D6Indicates the generation of underflow interrupt

factor. When "1" is read: Int. factor has generated

When "0" is read: Int. factor has not generated

When "1" is written: Factor flag is reset When "0" is written: Invalid

FTUx is the interrupt factor flag corresponding to interrupt of Timer x, and is set to "1" due to the counter underflow.

At this point, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of the interrupt flags (I0 and I1), an interrupt is generated to the CPU.

Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag is set to "1" when the interrupt generation condition is met.

To accept the subsequent interrupt after an interrupt generation, it is necessary to re-set the interrupt flags (set the interrupt flag to a lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and to reset the interrupt factor flag. The interrupt factor flag is reset to "0" by writing "1". In the 16-bit mode, the interrupt factor flag FTU(L) is not set to "1" and Timer(L) interrupt is not generated. In this mode, the interrupt factor flag FTU(H) is set to "1" by the underflow of the 16-bit counter.

At initial reset, this flag is reset to "0".

FTC0: 00FF29H•D1 FTC1: 00FF29H•D3 FTC2: 00FF29H•D5 FTC3: 00FF29H•D7 FTC4: 00FF2EH•D1 FTC5: 00FF2EH•D3 FTC6: 00FF2EH•D5 FTC7: 00FF2EH•D7

Indicates the generation of compare match interrupt factor.

When "1" is read:Int. factor has generatedWhen "0" is read:Int. factor has not generated

When "1" is written: Factor flag is reset When "0" is written: Invalid FTCx is the interrupt factor flag corresponding to interrupt of Timer x, and is set to "1" with the compare match signal.

At this point, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of the interrupt flags (I0 and I1), an interrupt is generated to the CPU.

Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag is set to "1" when the interrupt generation condition is met.

To accept the subsequent interrupt after an interrupt generation, it is necessary to re-set the interrupt flags (set the interrupt flag to a lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and to reset the interrupt factor flag. The interrupt factor flag is reset to "0" by writing "1".

In the 16-bit mode, the interrupt factor flag FTC(L) is not set to "1" and Timer(L) interrupt is not generated. In this mode, the interrupt factor flag FTC(H) is set to "1" by the compare match of the 16-bit counter.

At initial reset, this flag is reset to "0".

5.10.10 Programming notes

 The programmable timer actually enters into RUN or STOP status at the falling edge of the input clock after writing to the PTRUNx register. Consequently, when "0" is written to PTRUNx, the timer stops after counting once more (+1). PTRUNx is read as "1" until the timer actually stops.

Figure 5.10.10.1 shows the timing chart at the RUN/STOP control.

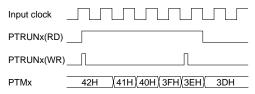


Fig. 5.10.10.1 Timing chart at RUN/STOP control

(2) When the SLP instruction is executed while the programmable timer is running (PTRUNx = "1"), the timer stops counting during SLEEP status. When SLEEP status is canceled, the timer starts counting. However, the operation becomes unstable immediately after SLEEP status is canceled. Therefore, when shifting to SLEEP status, stop the 16-bit programmable timer (PTRUNx = "0") prior to executing the SLP instruction.

Same as above, the TOUT signal output should be disabled (PTOUTx = "0") so that an unstable clock is not output to the clock output port terminal.

- (3) In the 16-bit mode, reading PTM(L) does not latch the Timer(H) counter data in PTM(H). To avoid generating a borrow from Timer(L) to Timer(H), read the counter data after stopping the timer by writing "0" to PTRUN(L).
- (4) For the reason below, pay attention to the reload data write timing when changing the interval of the programmable timer interrupts while the programmable timer is running. The programmable timer counts down at the falling edge of the input clock and at the same time it generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter and the counter data is determined at the next rising edge of the input clock (period shown in as ① in the figure).

(Reload data =	= 25H)
Input clock	
	03H 02H 01H 00H 25H 24H Je) flow (interrupt is generated)

Fig. 5.10.10.2 Reload timing for programmable timer

To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter data is determined including the reloading period ①. Be especially careful when using the OSC1 (low-speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3 (high-speed clock).

5.11 LCD Driver

5.11.1 Configuration of LCD driver

The S1C88650 has a built-in dot matrix LCD driver that can drive an LCD panel with a maximum of 4,032 dots (126 segments \times 32 commons). Figure 5.11.1.1 shows the configuration of the LCD driver and the drive power supply.

5.11.2 LCD power supply

The S1C88650 generates the LCD drive voltages VC1 to VC5 using the internal power supply circuit. It is not necessary to apply an external voltage. Note that the internally generated voltage cannot be used for driving external loads. The LCD system voltage regulator can be driven with VDD or VD2 depending on the power supply voltage level. Use the LCD system voltage regulator power select register VDSEL for this switching. When VDSEL is set to "0", VDD is selected and when VDSEL is set to "1", VD2 is selected. The VD2 voltage is generated by approximately doubling the VDD voltage in the power voltage booster circuit. When using VD2, write "1" to the power voltage booster circuit ON/OFF control register DBON to turn the power voltage booster circuit on. This must be done before the power source of the LCD system voltage regulator can be switched to VD2.

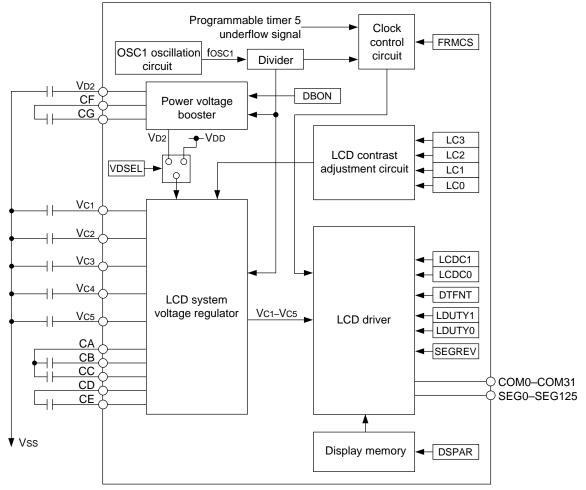


Fig. 5.11.1.1 Configuration of LCD driver and drive power supply

5.11.3 Frame frequency

This LCD driver allows selection of the source clock for generating the frame signal from the OSC1 oscillation clock (fosC1) and the programmable timer 5 underflow signal. By using programmable timer 5, flexible frame frequencies can be programmed. Refer to Section 5.10.8, "Setting frame frequency for LCD driver".

Use the LCD frame frequency source clock select register FRMCS to select the source clock. When FRMCS is set to "0", fosc1 is selected, and when it is set to "1", programmable timer 5 is selected. The following shows the frame frequencies when fosc1 is selected (fosc1 = 32.768 kHz).

1/8 duty: 64 Hz

1/16 duty: 32 Hz

1/32 duty: 32 Hz

5.11.4 Switching drive duty

The S1C88650 supports three types of LCD drive duty settings, 1/8, 1/16 and 1/32, and it can be switched using the LDUTY0 and LDUTY1 registers. Table 5.11.4.1 shows the relationship of the LDUTY setting, drive duty and the maximum number of displaying dots.

When 1/32 duty is selected, an LCD panel with 126 segments \times 32 commons (maximum 4,032 dots) can be driven.

When 1/16 duty is selected, an LCD panel with 126 segments × 16 commons (maximum 2,016 dots) can be driven. The COM16–COM31 terminals become invalid, in that they always output an OFF signal. When 1/8 duty is selected, an LCD panel with 126 segments × 8 commons (maximum 1,008 dots) can be driven. The COM8–COM31 terminals become invalid, in that they always output an OFF signal.

The drive bias is 1/5 (five potentials, VC1, VC2, VC3, VC4 and VC5) regardless of the drive duty selected. The respective drive waveforms are shown in Figures 5.11.4.1 to 5.11.4.3.

Table 5.11.4.1	Correspondence	between drive	dutv and	maximum	number o	of displaying dots

LDUTY1	LDUTY0	Duty	Common terminal	Segment terminal	Maximum number of display dots
1	1	Not allowed	-	_	_
1	0	1/16	COM0-COM15	SEG0-SEG125	2,016 dots
0	1	1/32	COM0-COM31	SEG0-SEG125	4,032 dots
0	0	1/8	COM0–COM7	SEG0-SEG125	1,008 dots

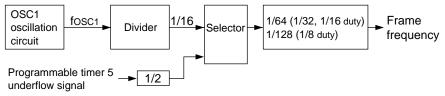


Fig. 5.11.3.1 Dividing the source clock to generate frame frequency

COM0 -

1 -

2 -

3 -

4

5 -

6 -

7 -

8

9

10

11

12

13 -

14 -

15 –

16 -

17

18

19

20

21

22 — H

> Н Н

Ή

SEG0 -1 -2 -4 -

Н НН Н

-

23 -

24 -

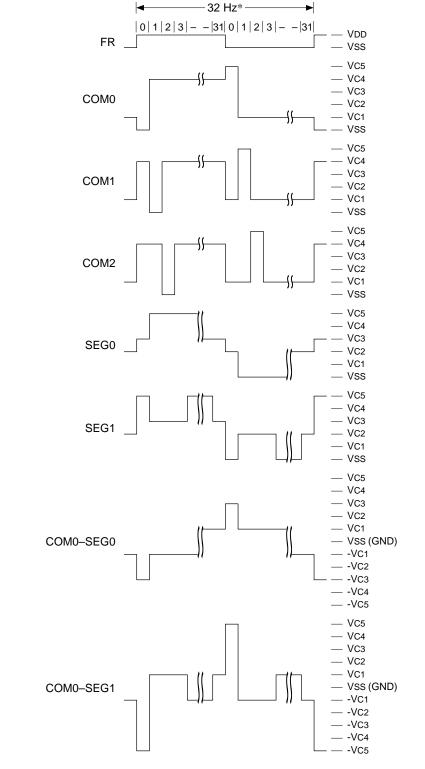
25 -

26 -27 -

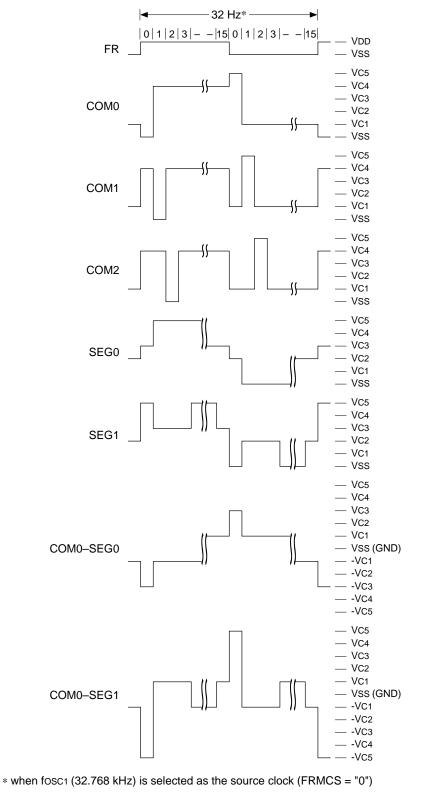
28 ŀ

29 -

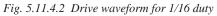
30

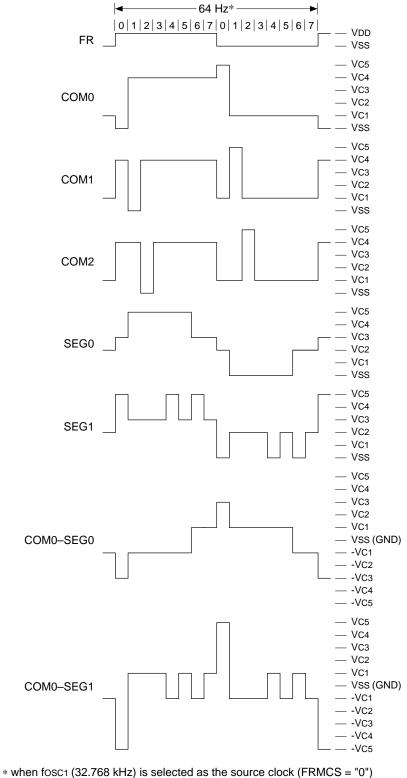

31 -

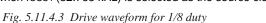
Н

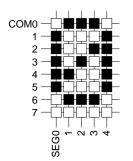

가다다

٦L_


Н Ή




* when fosc1 (32.768 kHz) is selected as the source clock (FRMCS = "0") Fig. 5.11.4.1 Drive waveform for 1/32 duty



COM0 -1 -2 -3 -4 5 6 7 Н Н 8 9 10 11 12 13 14 15 --0-0 Н H SEG0 -- 0 0 4

5.11.5 Display memory

The S1C88650 has a built-in 768-byte display memory. The display memory is allocated to address Fx00H-Fx7FH (x = 8-DH) and the correspondence between the memory bits and common/segment terminal is changed according to the selection status of the following items.

(1) Drive duty (1/32, 1/16 or 1/8 duty)

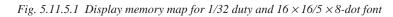
(2) Dot font $(16 \times 16/5 \times 8 \text{ or } 12 \times 12 \text{ dots})$

(3) SEG terminal assignment (normal or reverse)

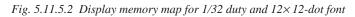
When 1/16 or 1/8 duty is selected for the drive duty, two screen areas are reserved in the display memory and the area to be displayed can be selected by the display memory area select register DSPAR. When "0" is written to DSPAR, display area 0 is selected and when "1" is written, display area 1 is selected.

Furthermore, memory allocation for $16 \times 16/5 \times 8$ dots and 12×12 dots can be selected in order to easily display 12×12 -dot font characters on the LCD panel.

This selection can be done by the dot font selection register DTFNT: when "0" is written to DTFNT, 16 \times 16/5 \times 8 dots is selected and when "1" is written, 12 \times 12 dots is selected.

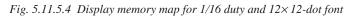

The memory allocation for the SEG terminals can be reversed using the SEG assignment reverse register SEGREV.

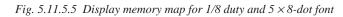
SEGREV	Assignment	Fx00H	Fx70H
1	Reverse	SEG125	SEG0
0	Normal	SEG0	SEG125

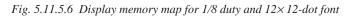

The correspondence between the display memory bits set according to the drive duty and font size, and the common/segment terminals are shown in Figures 5.11.5.1–5.11.5.6.

When "1" is written to the display memory bit corresponding to the dot on the LCD panel, the dot goes ON and when "0" is written, it goes OFF. Since display memory is designed to permit reading/writing, it can be controlled in bit units by logical operation instructions and other means (read, modify and write instructions). The display area bits which have not been assigned within the 768-byte display memory can be used as general purpose RAM with read/write capabilities. Even when external memory has expanded into the display memory area, this area is not released to external memory. Access to this area is always via display memory.

Addres	s/	0	1	2	3	4	5	6	7	
Data b		0–F	0–F	0–F	0–F	0–F	0–F	0–F	0–D	СОМ
	D0									0
	D1									1
00F800H	D2									2
	D3									3
	D4				Displa	y area				4
00F87DH										5
	D6									6
	D7									7
	D0									8
	D1									9
00F900H										10
001 30011	D3									11
	D4				Displa	y area				12
00F97DH										13
	D6									14
	D7									15
	D0									16
	D1									17
00FA00H										18
	D3									19
	D4				Displa	y area				20
00FA7DH										21
	D6									22
	D7									23
	D0									24
	D1									25
00FB00H										26
	D3									27
	D4				Displa	y area				28
00FB7DH	D5									29
	D6									30
	D7									31
	D0									
	D1									
00FC00H	D2									
	D3									
	D4									
00FC7DH	D5									
	D6									
	D7									
	D0									
	D1									
00FD00H	D2									
	D3									
	D4									
00FD7DH	D5									
	D6									
	D7									
SEG (norn		0–15	16–31	32–47	48–63	64–79	80–95	96–111	112–125	
SEG (reve	rse)*2	125–112	111–96	95–80	79–64	63–48	47–32	31–16	15–0	
*1: SEG	REV =	= "0"	*2: SEGF	REV = "1"						


Addres	s/	0	1	2	3	4	5	6	7	
Data b		0–F	0–F	0–F	0–F	0–F	0–F	0–F	0–D	COM
	D0									0
	D1									1
00F800H	D2									2
	D3									3
	D4									4
00F87DH	D5				Displa	varea				5
	D6				Dispia	y alea				6
	D7									7
	D0									8
	D1									9
00F900H										10
	D3									11
	D4									
00F97DH										
	D6									
	D7									
	D0									12
	D1				Displa	varoa				13
00FA00H					Dispia	y alea				14
1	D3									15
' 	D4									
00FA7DH										
	D6									
	D7									10
	D0									16
	D1									17
00FB00H	D2 D3									18 19
	D3 D4									20
00FB7DH										20
	D5				Displa	y area				22
	D7									22
	D0									24
	D1									25
00FC00H										26
	D3									27
	D4									
00FC7DH										
	D6									
	D7									
	D0									28
	D1									29
00FD00H					Displa	y area				30
	D3									31
	D4									
00FD7DH	D5									
	D6									
	D7									
SEG (norn		0–15	16–31	32–47	48–63	64–79	80–95	96–111	112–125	
SEG (reve	rse)*2	125–112	111–96	95–80	79–64	63–48	47–32	31–16	15–0	
*1: SEG	REV :	= "0"	*2: SEGI	REV = "1"						


Addres	s/	0	1	2	3	4	5	6	7	
Data b		0–F	0–F	0–F	0–F	0–F	0–F	0–F	0–D	СОМ
	D0							1		0
	D1									1
00F800H										2
	D3									3
	D4		C	Display are	a 0 (when	DSPAR is	s set to "0	")		4
00F87DH										5
	D6									6
	D7									7
	D0									8
	D1									9
00F900H										10
0059000	D3									11
	D4		C	Display are	a 0 (when	DSPAR is	s set to "0	")		12
00F97DH										13
	D6									14
	D7									15
	D0									0
	D1									1
0054001										2
00FA00H	D2									3
	D3		C	Display are	a 1 (when	DSPAR is	s set to "1	")		4
00FA7DH				-1 - 7		-		,		5
	-									
	D6									6
	D7									7
	D0									8
	D1									9 10
00FB00H										
	D3 D4		Г)isplay are	a 1 (when	DSPAR is	s set to "1	")		11
00FB7DH			_					,		12 13
										13
	D6 D7									14
										15
	D0 D1									
005000	-									
00FC00H	D2									
	D3									
00FC7DH										
	D5									
	D7									
	D0 D1									
00FD00H	D2 D3									
	-									
00FD7DH	D4									
	D6									
SEG (norn	D7	0–15	16 21	32–47	18 63	64 70	80.05	06 111	110 105	ļ]
SEG (reve			16–31 111–96	32–47 95–80	48–63 79–64	64–79 63–48	80–95 47–32	96–111 31–16	112–125 15–0	
*1: SEG				95–60 REV = "1"	13-04	63–48	41-32	51-10	10-0	1
↑1. 3EG		- 0	*Z. 3EGI	$\nabla = V = 1$						


Addres	s/	0	1	2	3	4	5	6	7	
Data b		0–F	0–F	0–F	0–F	0–F	0–F	0–F	0–D	СОМ
	D0				I					0
	D1									1
00F800H	D2									2
	D3									3
	D4									4
00F87DH	D5		г	Nieplay aro	a 0 (when		s sot to "O	")		5
	D6		L	nopiay are			5 301 10 0)		6
	D7									7
	D0									8
	D1									9
00F900H										10
	D3									11
	D4									
00F97DH										
	D6									
	D7 D0									12
	D1									13
00FA00H	-		C	Display are	a 0 (when	DSPAR is	s set to "0	")		14
	D3									15
	D4									
00FA7DH										
	D6									
	D7									
	D0									0
	D1									1
00FB00H	D2									2
	D3									3
	D4									4
00FB7DH	-		C	Display are	a 1 (when	DSPAR is	s set to "1	")		5
	D6									6
	D7									7
	D0 D1									8 9
00FC00H										10
	D3									11
	D4									
00FC7DH										
	D6									
	D7									
	D0									12
	D1		_							13
00FD00H			L	hsplay are	a 1 (when	DSPAR IS	s set to "1)		14
	D3									15
	D4									
00FD7DH										
	D6									
SEG (norn	D7	0–15	16–31	22 17	18 62	64 70	80.05	96–111	112–125	
SEG (nom				32–47 95–80	48–63 79–64	64–79 63–48	80–95 47–32	31–16	112-125	
					13-04	00-40		51-10	10-0	i.
*1. JLG	SEGREV = "0" *2: SEGREV = "1"									

Addres	s/	0	1	2	3	4	5	6	7	
Data b	oit	0–F	0–F	0–F	0–F	0–F	0–F	0–F	0-D	СОМ
	D0									0
	D1									1
00F800H	D2									2
	D3		_							3
	D4		Ľ	Display are	a 0 (when	DSPAR is	s set to "0'	")		4
00F87DH	D5									5
	D6									6
	D7									7
	D0									
	D1									
00F900H	D2									
	D3									
	D4									
00F97DH	D5									
	D6									
	D7									
	D0									0
	D1									1
00FA00H	D2									2
	D3		-	N I				"		3
	D4		L	hisplay are	a 1 (when	DSPAR is	s set to "1"	")		4
00FA7DH										5
	D6									6
	D7									7
	D0									
	D1									
00FB00H	D2									
	D3									
	D4									
00FB7DH										
	D6									
	D7									
	D0									
	D1									
00FC00H										
	D3									
	D4									
00FC7DH										
	D6									
	D7									
	D0									
	D1									
00FD00H										
	D3									
	D4									
00FD7DH										
	D6									
SEC (norm	D7	0.45	16 24	22 47	10 60	64 70	00 OF	06 114	110 105	
SEG (norn		0-15	16-31	32-47	48-63	64–79 63–48	80-95	96-111	112-125	
SEG (reve			111-96	95–80	79–64	63–48	47–32	31–16	15–0]
*1: SEG		= 0	*Z: SEGI	REV = "1"						

Addres	s/	0	1	2	3	4	5	6	7	
Data		0–F	0–F	0–F	0–F	0–F	0–F	0–F	0–D	СОМ
	D0									0
	D1									1
00F800H	D2									2
	D3		_							3
	D4		C	Display are	a 0 (when	DSPAR is	s set to "0'	')		4
00F87DH	D5									5
	D6									6
	D7									7
	D0									
	D1									
00F900H										
	D3									
	D4									
00F97DH										
	D6									
	D7 D0									
	D0									
00540011										
00FA00H	D2									
	D4									
00FA7DH	-									
	D6									
	D7									
	D0									0
	D1									1
00FB00H	D2									2
	D3		_							3
	D4		C	Display are	a 1 (when	DSPAR is	s set to "1'	')		4
00FB7DH										5
	D6									6
	D7									7
	D0									
	D1									
00FC00H										
	D3 D4									
00FC7DH										
	D5									
	D7									
	D0									
	D1									
00FD00H										
	D3									
	D4									
00FD7DH										
	D6									
	D7									
SEG (norn		0–15	16–31	32–47	48–63	64–79	80–95	96–111	112–125	
SEG (reve			111–96	95–80	79–64	63–48	47–32	31–16	15–0	
*1: SEG	REV :	= "0"	*2: SEGF	REV = "1"						

5.11.6 Display control

The display status of the built-in LCD driver and the contrast adjustment can be controlled with the built-in LCD driver. The LCD display status can be selected by display control registers LCDC0 and LCDC1. Setting the value and display status are shown in Table 5.11.6.1.

Table 5.11.6.1 LCD display control

LCDC1	LCDC0	LCD display
1	1	All LCDs lit (Static)
1	0	All LCDs out (Dynamic)
0	1	Normal display
0	0	Drive OFF

All the dots in the LCD display can be turned on or off directly by the drive waveform output from the LCD driver, and data in the display memory is not changed. Also, since the common terminal at this time is set to static drive when all the dots are on and is set to dynamic drive when they are off, this function can be used as follows:

- (1) Since all dots on is binary output (VC5 and VSS) with static drive, the common/segment terminal can be used as a monitor terminal for the OSC1 oscillation frequency adjustment.
- (2) Since all dots off is dynamic drive, you can brink the entire LCD display without changing display memory data.

Selecting LCD drive OFF turns the LCD drive power circuit OFF and all the VC1 to VC5 terminals go to Vss level.

Furthermore, when the SLP instruction is executed, registers LCDC0 and LCDC1 are automatically reset to "0" (set to drive off) by hardware.

The LCD contrast can be adjusted in 16 stages. This adjustment is done by the contrast adjustment register LCO–LC3, and the setting values correspond to the contrast as shown in Table 5.11.6.2.

Table 5.11.6.2 LCD contrast adjustment

	l'able 5.	11.0.2	LCD CO	ntrast aajustment
LC3	LC2	LC1	LC0	Contrast
1	1	1	1	Dark
1	1	1	0	\uparrow
1	1	0	1	
:	:	:	:	
0	0	1	0	
0	0	0	1	\downarrow
0	0	0	0	Light

5.11.7 Control of LCD driver

Table 5.11.7.1 shows the LCD driver control bits.

			Table 5.11.7.1 LCD drive					
Address		Name	Function	1	0	SR	R/W	Comment
00FF03	D7	-	_	-	-	_		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	-		-	-	-		
	D4	-	_	-	-	_		
	D3	-	-	-	-	-		
	D2	-	-	-	-	-		
	D1	VDSEL	Power source select for LCD voltage regulator	VD2	VDD	0	R/W	
	D0	DBON	Power voltage booster On/Off control	On	Off	0	R/W	
00FF10	D7	HLMOD	Heavy load protection mode	On	Off	0	R/W	
	D6	SEGREV	Reverse SEG assignment	Reverse	Normal	0	R/W	
	D5	-	R/W register	1	0	0	R/W	Reserved register
	D4	-	R/W register	1	0	0	R/W	
	D3	_	R/W register	1	0	0	R/W	
	D2	DTFNT	LCD dot font selection	12×12	16×16/5×8	0	R/W	
	D1	LDUTY1	LCD drive duty selection			1	R/W	
			LDUTY1 LDUTY0 Duty 1 1 Not allowed					
	D0	LDUTY0	1 1 Not allowed 1 0 1/16			0	R/W	
			0 1 1/32			÷		
			0 0 1/8					
00FF11	D7	FRMCS	LCD frame signal source clock selection	PTM	fosci	0	R/W	
	D6	DSPAR	LCD display memory area selection	Display area 1	Display area 0	0	R/W	
	D5	LCDC1	LCD display control			0	R/W	These bits are reset
			LCDC1 LCDC0 LCD display					to $(0, 0)$ when
			1 1 All LCDs lit					SLP instruction is executed.
	D4	LCDC0	1 0 All LCDs out			0	R/W	is executed.
			0 1 Normal display 0 0 Drive off					
	D3	LC3	LCD contrast adjustment			0	R/W	
		LC2	LC3 LC2 LC1 LC0 Contrast			0	R/W	
			1 1 1 1 Dark 1 1 1 0 :					
		LC1				0	R/W	
	D0	LC0	0 0 0 0 Light			0	R/W	

Table 5.11.7.1 LCD driver control bits

LDUTY0, LDUTY1: 00FF10H•D0, D1

Selects the drive duty.

Table 5.11.7.2 Setting drive duty

LDUTY1	LDUTY0	Duty	Common terminal	Segment terminal	Maximum number of display dots
1	1	Not allowed	-	_	_
1	0	1/16	COM0-COM15	SEG0-SEG125	2,016 dots
0	1	1/32	COM0-COM31	SEG0-SEG125	4,032 dots
0	0	1/8	COM0–COM7	SEG0-SEG125	1,008 dots

At initial reset, LDUTY is set to "10" (1/16 duty).

DTFNT: 00FF10H•D2

Selects the dot font.

When "1" is written: 12×12 dotsWhen "0" is written: $16 \times 16/5 \times 8$ dotsReading:Valid

Select $16 \times 16/5 \times 8$ dots or 12×12 dots type for the display memory area.

When "0" is written to DTFNT, $16 \times 16/5 \times 8$ dots is selected and when "1" is written, 12×12 dots is selected.

The correspondence between the display memory bits set according to the dot font, and the common/ segment terminals are shown in Figures 5.11.5.1–5.11.5.5.

At initial reset, DTFNT is set to "0" ($16 \times 16/5 \times 8$ dots).

SEGREV: 00FF10H•D6

Reverses the memory allocation for the SEG terminals.

Table 5.11.7.3	Selecting SEG	assignment
----------------	---------------	------------

SEGREV	Assignment	Fx00H	Fx70H
1	Reverse	SEG125	SEG0
0	Normal	SEG0	SEG125

At initial reset, SEGREV is set to "0" (normal).

DSPAR: 00FF11H•D6

Selects the display area.

When "1" is written:Display area 1When "0" is written:Display area 0Reading:Valid

An area to be displayed is selected from two areas in the display memory.

When "0" is written to DSPAR, display area 0 is selected and when "1" is written, display area 1 is selected.

The correspondence between the display memory bits set according to the display area, and the common/segment terminals are shown in Figures 5.11.5.1–5.11.5.5.

At initial reset, DSPAR is set to "0" (display area 0).

LCDC0, LCDC1: 00FF11H•D4, D5

Controls the LCD display.

Table	5.11.7.4	LCD	display	control
1 000 00	01111/11	202	coprery	001111 01

		1 2
LCDC1	LCDC0	LCD display
1	1	All LCDs lit (Static)
1	0	All LCDs out (Dynamic)
0	1	Normal display
0	0	Drive OFF

The four settings mentioned above can be made without changing the display memory data. At initial reset and in the SLEEP status, this register is set to "0" (drive off).

LC0-LC3: 00FF11H•D0-D3

Adjusts the LCD contrast.

LC3	LC2	LC1	LC0	Contrast
1	1	1	1	Dark
1	1	1	0	↑
1	1	0	1	
1	1	0	0	
1	0	1	1	
1	0	1	0	
1	0	0	1	
1	0	0	0	
0	1	1	1	
0	1	1	0	
0	1	0	1	
0	1	0	0	
0	0	1	1	
0	0	1	0	
0	0	0	1	\downarrow
0	0	0	0	Light

The contrast can be adjusted in 16 stages as mentioned above. This adjustment changes the drive voltage on terminals VC1 to VC5. At initial reset, this register is set to "0".

FRMCS: 00FF11H•D7

Selects the source clock for generating the frame signal.

When "1" is written:Programmable timer 5When "0" is written:fosc1Reading:Valid

When "0" is written to FRMCS, fosc1 is selected, and when "1" is written, programmable timer 5 is selected.

At initial reset, FRMCS is set to "0" (fosc1).

DBON: 00FF03H•D0

Control the power voltage booster circuit.

When "1" is written: ON When "0" is written: OFF Reading: Valid

When "1" is written to DBON, the power voltage booster activates and almost doubles the VDD voltage to generate the VD2 voltage. Turn the power voltage booster on when driving the LCD system voltage regulator with VD2.

When "0" is written to DBON, the power voltage booster goes off. When driving the LCD system voltage regulator with VDD, turn the power voltage booster off to reduce current consumption. At initial reset, DBON is set to "0" (OFF).

VDSEL: 00FF03H•D1

Selects the power voltage for the LCD system voltage regulator.

When "1" is written:VD2When "0" is written:VDDReading:Valid

When "1" is written to VDSEL, the LCD system voltage regulator is driven with VD2 generated by the power voltage booster. Before this setting is made, it is necessary to write "1" to DBON to turn on the power voltage booster. Furthermore, do not switch the power voltage to VD2 for at least 1 msec after the power voltage booster is turned on to allow VD2 stabilize.

When "0" is written to VDSEL, the LCD system voltage regulator is driven with VDD. At initial reset, VDSEL is set to "0" (VDD).

5.11.8 Programming notes

- (1) When the SLP instruction is executed, display control registers LCDC0 and LCDC1 are automatically reset to "0" by hardware.
- (2) When driving the LCD system voltage regulator with VD2, wait at least 1 msec for stabilization of the voltage before switching the power voltage for the LCD system voltage regulator to VD2 using VDSEL after the power voltage booster is turned on.

5.12 Supply Voltage Detection (SVD) Circuit

5.12.1 Configuration of SVD circuit

The S1C88650 has a built-in SVD (supply voltage detection) circuit, so that the software can find when the source voltage lowers. Turning the SVD circuit ON/OFF and the SVD criteria voltage setting can be done with software. Figure 5.12.1.1 shows the configuration of the SVD circuit.

5.12.2 SVD operation

The SVD circuit compares the criteria voltage set by software and the supply voltage (VDD–VSS) and sets its results into the SVDDT latch. By reading the data of this SVDDT latch, it can be determined by means of software whether the supply voltage is normal or has dropped.

The criteria voltage can be set for the 13 types shown in Table 5.12.2.1 by the SVDS3–SVDS0 registers.

1				Criteria
SVDS3	SVDS2	SVDS1	SVDS0	voltage (V)
1	1	1	1	2.7
1	1	1	0	2.6
1	1	0	1	2.5
1	1	0	0	2.4
1	0	1	1	2.3
1	0	1	0	2.2
1	0	0	1	2.1
1	0	0	0	2.05
0	1	1	1	2.0
0	1	1	0	1.95
0	1	0	1	1.9
0	1	0	0	1.85
0	0	1	1	1.8
0	0	1	0	-
0	0	0	1	-
0	0	0	0	_

When the SVDON register is set to "1", source voltage detection by the SVD circuit is executed. As soon as the SVDON register is reset to "0", the result is loaded to the SVDDT latch and the SVD circuit goes OFF.

To obtain a stable detection result, the SVD circuit must be ON for at least 500 μ sec. So, to obtain the SVD detection result, follow the programming sequence below.

- 1. Set SVDON to "1"
- 2. Maintain for 500 µsec minimum
- 3. Set SVDON to "0"
- 4. Read SVDDT

When the SVD circuit is ON, the IC draws a large current, so keep the SVD circuit off unless it is.

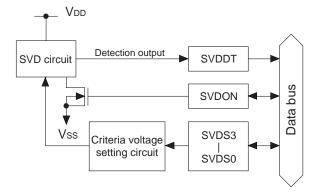


Fig. 5.12.1.1 Configuration of SVD circuit

Table 5.12.2.1 Criteria voltage setting

5.12.3 Control of SVD circuit

Table 5.12.3.1 shows the SVD circuit control bits.

 Table 5.12.3.1
 SVD circuit control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF12	D7	-	_	-	-	-		Constantly "0" when
	D6	-	_	-	-	-		being read
	D5	SVDDT	SVD detection data	Low	Normal	0	R	
	D4	SVDON	SVD circuit On/Off	On	Off	0	R/W	
	D3	SVDS3	SVD criteria voltage setting			0	R/W	
	D2	SVDS2	$\frac{\text{SVDS3}}{1} \frac{\text{SVDS2}}{1} \frac{\text{SVDS1}}{1} \frac{\text{SVDS0}}{1} \frac{\text{Voltage (V)}}{2.7}$			0	R/W	
	D1	SVDS1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	SVDS0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	

SVDS3-SVDS0: 00FF12H•D3-D0

Criteria voltage for SVD is set as shown in Table 5.12.2.1.

At initial reset, this register is set to "0".

SVDON: 00FF12H•D4

Controls the SVD circuit ON and OFF.

When "1" is written:SVD circuit ONWhen "0" is written:SVD circuit OFFReading:Valid

When the SVDON register is set to "1", a supply voltage detection is executed by the SVD circuit. As soon as SVDON is reset to "0", the result is loaded to the SVDDT latch. To obtain a stable detection result, the SVD circuit must be ON for at least 500 μ sec.

At initial reset, this register is set to "0".

SVDDT: 00FF12H•D5

This is the result of supply voltage detection.

When "0" is read:	Supply voltage (VDD-Vss)
	≥ Criteria voltage
When "1" is read:	Supply voltage (VDD-VSS)
	< Criteria voltage
Writing:	Invalid

The result of supply voltage detection at time of SVDON is set to "0" can be read from this latch. At initial reset, SVDDT is set to "0".

5.12.4 Programming notes

- To obtain a stable detection result, the SVD circuit must be ON for at least 500 µsec. So, to obtain the SVD detection result, follow the programming sequence below.
 - 1. Set SVDON to "1"
 - 2. Maintain for 500 µsec minimum
 - 3. Set SVDON to "0"
 - 4. Read SVDDT
- (2) The SVD circuit should normally be turned OFF because SVD operation increase current consumption.

5.13 Heavy Load Protection Function

5.13.1 Outline of heavy load protection function

The S1C88650 has a heavy load protection function to prevent malfunction due to a power voltage fluctuation caused by a heavy battery load such as when an external lamp is driven and while the IC is running in high-speed with the OSC3 clock. This function works when the IC enters the heavy load protection mode. Set the IC into the heavy load protection mode when there are inconsistencies in density on the LCD panel as well as when the IC is under one of the condition above. The normal mode (heavy load protection function is off) changes to the heavy load protection mode (heavy load protection function is on) when the software changes the mode to the heavy load protection mode (HLMOD = "1").

Note: In the heavy load protection mode, more current is consumed than in the normal mode. Unless necessary, do not select the heavy load protection mode with the software.

5.13.2 Control of heavy load protection function

Table 5.13.2.1 shows the control bit for the heavy load protection function.

Address	Bit	Name		Functio	on	1	0	SR	R/W	Comment
00FF10	D7	HLMOD	Heavy load p	Heavy load protection mode			Off	0	R/W	
	D6	SEGREV	Reverse SEC	3 assignment		Reverse	Normal	0	R/W	
	D5	-	R/W register			1	0	0	R/W	Reserved register
	D4	-	R/W register			1	0	0	R/W	
	D3	-	R/W register			1	0	0	R/W	
	D2	DTFNT	LCD dot fon	t selection		12×12	16×16/5×8	0	R/W	
	D1	LDUTY1	LCD drive d	uty selection				1	R/W	
			LDUTY1	LDUTY0	Duty					
			. 1	1	Not allowed					
	D0	LDUTY0	1	0	1/16			0	R/W	
			0	1	1/32					
			0	0	1/8					

T.1.1. 5 12 2 1	C		- 4 * - · · · C · · · · · · · · ·
<i>Taple 3.13.2.1</i>	Control bit for heav	v ioaa proie	спон нинспон

HLMOD: 00FF10H•D7

Controls the heavy load protection mode.

When "1" is written:Heavy load protection ONWhen "0" is written:Heavy load protection OFFReading:Valid

The device enters the heavy load protection mode by writing "1" to HLMOD, and returns to the normal mode by writing "0". In the heavy load protection mode, the consumed current becomes larger. Unless necessary, do not select the heavy load protection mode with the software. At initial reset, this register is set to "0".

5.13.3 Programming note

In the heavy load protection mode, more current is consumed than in the normal mode. Unless necessary, do not select the heavy load protection mode with the software.

5.14 Interrupt and Standby Status

Types of interrupts

4 systems and 31 types of interrupts have been provided for the S1C88650.

External interrupt

• K00-K07 input interrupt (8 types)

Internal interrupt

- Clock timer interrupt (4 types)
- Programmable timer interrupt (16 types)
- Serial interface interrupt (3 types)

An interrupt factor flag that indicates the generation of an interrupt factor and an interrupt enable register that sets enable/disable for interrupt requests have been provided for each interrupt and interrupt generation can be optionally set for each factor.

In addition, an interrupt priority register has been provided for each system of interrupts and the priority of interrupt processing can be set to 3 levels in each system.

Figure 5.14.1 shows the configuration of the interrupt circuit.

Refer to the explanations of the respective peripheral circuits for details on each interrupt.

HALT status

By executing the program's HALT instruction, the S1C88650 enters the HALT status.

Since CPU operation stops in the HALT status, power consumption can be reduced with only peripheral circuit operation.

Cancellation of the HALT status is done by initial reset or an optional interrupt request, and the CPU restarts program execution from an exception processing routine.

See the "S1C88 Core CPU Manual" for the HALT status and reactivation sequence.

SLEEP status

By executing the program's SLP instruction, the S1C88650 enters the SLEEP status.

Since the operation of the CPU and peripheral circuits stop completely in the SLEEP status, power consumption can be reduced even more than in the HALT status.

Cancellation of the SLEEP status is done by initial reset or an input interrupt from the input port. The CPU reactivates after waiting 128/fosc1 or 512/fosc3 seconds of oscillation stabilization time (the oscillation stabilization time varies depending on the operating clock being used when the SLP instruction is executed). At this time, the CPU restarts program execution from an exception processing routine (input interrupt routine).

Note: The oscillation becomes unstable for a while after SLEEP status is cancelled, the wait time for restarting the CPU may be longer than 128/fosc1 or 512/fosc3 seconds.

5.14.1 Interrupt generation conditions

The interrupt factor flags that indicate the generation of their respective interrupt factors are provided for the previously indicated 4 systems and 31 types of interrupts and they will be set to "1" by the generation of a factor.

In addition, interrupt enable registers with a 1 to 1 correspondence to each of the interrupt factor flags are provided. An interrupt is enabled when "1" is written and interrupt is disabled when "0" is written.

The CPU manages the enable/disable of interrupt requests at the interrupt priority level. An interrupt priority register that sets the priority level is provided for each of the interrupts of the 4 systems and the CPU accepts only interrupts above the level that has been indicated with the interrupt flags (I0 and I1).

Consequently, the following three conditions are necessary for the CPU to accept the interrupt.

- (1) The interrupt factor flag has been set to "1" by generation of an interrupt factor.
- (2) The interrupt enable register corresponding to the above has been set to "1".
- (3) The interrupt priority register corresponding to the above has been set to a priority level higher than the interrupt flag (I0 and I1) setting.

The CPU initially samples the interrupt for the first op-code fetch cycle of each instruction. Thereupon, the CPU shifts to the exception processing when the above mentioned conditions have been established. See the "S1C88 Core CPU Manual" for the exception processing sequence.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Interrupt and Standby Status)

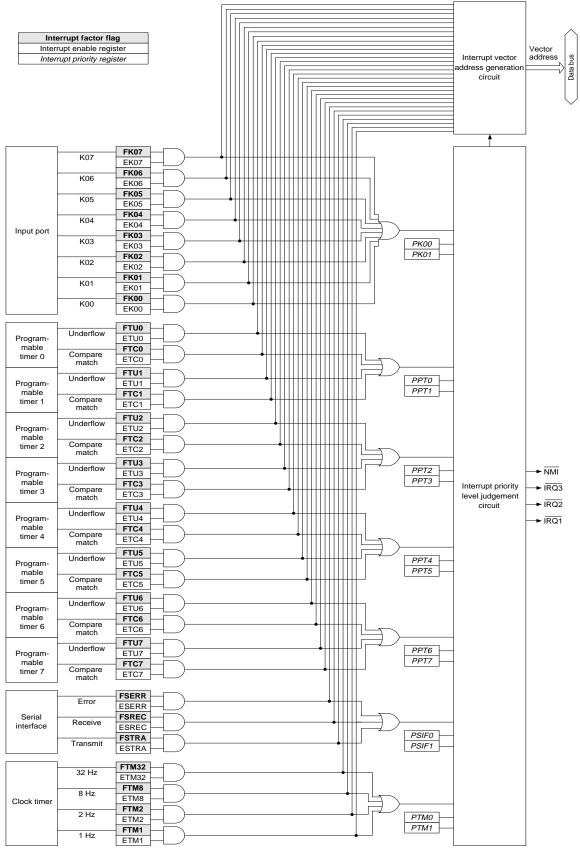


Fig. 5.14.1 Configuration of interrupt circuit

5.14.2 Interrupt factor flag

Table 5.14.2.1 shows the correspondence between the factors generating an interrupt and the interrupt factor flags.

The corresponding interrupt factor flags are set to "1" by generation of the respective interrupt factors. The corresponding interrupt factor can be confirmed by reading the flags through software. Interrupt factor flag that has been set to "1" is reset to "0" by writing "1". Note: When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.

At initial reset, the interrupt factor flags are reset to "0".

Interrupt factor	-	t factor flag					
K07 input of falling edge or rising edge (instruction at KCP07)	FK07	00FF28H·D7					
K06 input of falling edge or rising edge (instruction at KCP06)	FK06	00FF28H·D6					
K05 input of falling edge or rising edge (instruction at KCP05)	FK05	00FF28H·D5					
K04 input of falling edge or rising edge (instruction at KCP04)	FK04	00FF28H·D4					
K03 input of falling edge or rising edge (instruction at KCP03)	FK03	00FF28H·D3					
K02 input of falling edge or rising edge (instruction at KCP02)	FK02	00FF28H·D2					
K01 input of falling edge or rising edge (instruction at KCP01)	FK01	00FF28H·D1					
K00 input of falling edge or rising edge (instruction at KCP00)	FK00	00FF28H·D0					
Programmable timer 0 underflow	FTU0	00FF29H·D0					
Programmable timer 0 compare match	FTC0	00FF29H·D1					
Programmable timer 1 underflow	FTU1	00FF29H·D2					
Programmable timer 1 compare match	FTC1	00FF29H·D3					
Programmable timer 2 underflow	FTU2	00FF29H·D4					
Programmable timer 2 compare match	FTC2	00FF29H·D5					
Programmable timer 3 underflow	FTU3	00FF29H·D6					
Programmable timer 3 compare match	FTC3	00FF29H·D7					
Programmable timer 4 underflow	FTU4	00FF2EH·D0					
Programmable timer 4 compare match	FTC4	00FF2EH·D1					
Programmable timer 5 underflow	FTU5	00FF2EH·D2					
Programmable timer 5 compare match	FTC5	00FF2EH·D3					
Programmable timer 6 underflow	FTU6	00FF2EH·D4					
Programmable timer 6 compare match	FTC6	00FF2EH·D5					
Programmable timer 7 underflow	FTU7	00FF2EH·D6					
Programmable timer 7 compare match	FTC7	00FF2EH·D7					
Serial interface receiving error (in asynchronous mode)	FSERR	00FF27H·D2					
Serial interface receiving completion	FSREC	00FF27H·D1					
Serial interface transmitting completion	FSTRA	00FF27H·D0					
Falling edge of the clock timer 32 Hz signal	FTM32	00FF26H·D3					
Falling edge of the clock timer 8 Hz signal	FTM8	00FF26H·D2					
Falling edge of the clock timer 2 Hz signal	FTM2	00FF26H·D1					
Falling edge of the clock timer 1 Hz signal	FTM1	00FF26H·D0					

5.14.3 Interrupt enable register

The interrupt enable register has a 1 to 1 correspondence with each interrupt factor flag and enable/disable of interrupt requests can be set.

When "1" is written to the interrupt enable register, an interrupt request is enabled, and is disabled when "0" is written. This register also permits reading, thus making it possible to confirm that a status has been set. At initial reset, the interrupt enable registers are set to "0" and shifts to the interrupt disable status. Table 5.14.3.1 shows the correspondence between the interrupt enable registers and the interrupt factor flags.

Interrupt	Interrup	t factor flag	Interrupt enable register		
K07 input	FK07	00FF28H·D7	EK07	00FF24H·D7	
K06 input	FK06	00FF28H·D6	EK06	00FF24H·D6	
K05 input	FK05	00FF28H·D5	EK05	00FF24H·D5	
K04 input	FK04	00FF28H·D4	EK04	00FF24H·D4	
K03 input	FK03	00FF28H·D3	EK03	00FF24H·D3	
K02 input	FK02	00FF28H·D2	EK02	00FF24H·D2	
K01 input	FK01	00FF28H·D1	EK01	00FF24H·D1	
K00 input	FK00	00FF28H·D0	EK00	00FF24H·D0	
Timer 0 underflow	FTU0	00FF29H·D0	ETU0	00FF25H·D0	
Timer 0 compare match	FTC0	00FF29H·D1	ETC0	00FF25H·D1	
Timer 1 underflow	FTU1	00FF29H·D2	ETU1	00FF25H·D2	
Timer 1 compare match	FTC1	00FF29H·D3	ETC1	00FF25H·D3	
Timer 2 underflow	FTU2	00FF29H·D4	ETU2	00FF25H·D4	
Timer 2 compare match	FTC2	00FF29H·D5	ETC2	00FF25H·D5	
Timer 3 underflow	FTU3	00FF29H·D6	ETU3	00FF25H·D6	
Timer 3 compare match	FTC3	00FF29H·D7	ETC3	00FF25H·D7	
Timer 4 underflow	FTU4	00FF2EH·D0	ETU4	00FF2CH·D0	
Timer 4 compare match	FTC4	00FF2EH·D1	ETC4	00FF2CH·D1	
Timer 5 underflow	FTU5	00FF2EH·D2	ETU5	00FF2CH·D2	
Timer 5 compare match	FTC5	00FF2EH·D3	ETC5	00FF2CH·D3	
Timer 6 underflow	FTU6	00FF2EH·D4	ETU6	00FF2CH·D4	
Timer 6 compare match	FTC6	00FF2EH·D5	ETC6	00FF2CH·D5	
Timer 7 underflow	FTU7	00FF2EH·D6	ETU7	00FF2CH·D6	
Timer 7 compare match	FTC7	00FF2EH·D7	ETC7	00FF2CH·D7	
Serial interface receiving error	FSERR	00FF27H·D2	ESERR	00FF23H·D2	
Serial interface receiving completion	FSREC	00FF27H·D1	ESREC	00FF23H·D1	
Serial interface transmitting completion	FSTRA	00FF27H·D0	ESTRA	00FF23H·D0	
Clock timer 32 Hz	FTM32	00FF26H·D3	ETM32	00FF22H·D3	
Clock timer 8 Hz	FTM8	00FF26H·D2	ETM8	00FF22H·D2	
Clock timer 2 Hz	FTM2	00FF26H·D1	ETM2	00FF22H·D1	
Clock timer 1 Hz	FTM1	00FF26H·D0	ETM1	00FF22H·D0	

Table 5.14.3.1 Interrupt enable registers and interrupt factor flags

5.14.4 Interrupt priority register and interrupt priority level

Interrupt	Interrupt priority register
K00–K07 input interrupt	PK00, PK01 00FF20·D6, D7
Programmable timer interrupt 1-0	PPT0, PPT1 00FF21·D2, D3
Programmable timer interrupt 3–2	PPT2, PPT3 00FF21·D4, D5
Programmable timer interrupt 5-4	PPT4, PPT5 00FF2A·D0, D1
Programmable timer interrupt 7-6	PPT6, PPT7 00FF2A·D2, D3
Serial interface interrupt	PSIF0, PSIF1 00FF20·D4, D5
Clock timer interrupt	PTM0, PTM1 00FF20·D0, D1

Table 5.14.4.1 Interrupt priority register

The interrupt priority registers shown in Table 5.14.4.1 are set to each system of interrupts and the interrupt priority levels for the CPU can be set to the optional priority level (0-3). As a result, it is possible to have multiple interrupts that match the system's interrupt processing priority levels.

The interrupt priority level between each system can optionally be set to three levels by the interrupt priority register. However, when more than one system is set to the same priority level, they are processed according to the default priority level.

P*1	P*0	Interrupt priority level				
1	1	Level 3 (IRQ3)				
1	0	Level 2 $(\overline{IRQ2})$				
0	1	Level 1 $(\overline{IRQ1})$				
0	0	Level 0 (None)				

At initial reset, the interrupt priority registers are all set to "0" and each interrupt is set to level 0. Furthermore, the priority levels in each system have been previously decided and they cannot be changed.

The CPU can mask each interrupt by setting the interrupt flags (I0 and I1). The relation between the interrupt priority level of each system and interrupt flags is shown in Table 5.14.4.3, and the CPU accepts only interrupts above the level indicated by the interrupt flags.

The $\overline{\text{NMI}}$ (watchdog timer) that has level 4 priority, is always accepted regardless of the setting of the interrupt flags.

Table 5.14.4.3 Interrupt mask setting of CPU

l1	10	Acceptable interrupt
1	1	Level 4 (NMI)
1	0	Level 4, Level 3 (IRQ3)
0	1	Level 4, Level 3, Level 2 (IRQ2)
0	0	Level 4, Level 3, Level 2, Level 1 (IRQ1)

After an interrupt has been accepted, the interrupt flags are written to the level of that interrupt. However, interrupt flags after an $\overline{\text{NMI}}$ has been accepted are written to level 3 (I0 = I1 = "1").

Table 5.14.4.4 Interrupt flags after acceptance of interrupt

Accepted interru	1	10	
Level 4	(\overline{NMI})	1	1
Level 3	(IRQ3)	1	1
Level 2	$(\overline{IRQ2})$	1	0
Level 1	$(\overline{IRQ1})$	0	1

The set interrupt flags are reset to their original value on return from the interrupt processing routine. Consequently, multiple interrupts up to 3 levels can be controlled by the initial settings of the interrupt priority registers alone. Additional multiplexing can be realized by rewriting the interrupt flags and interrupt enable register in the interrupt processing routine.

Note: Beware. If the interrupt flags have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.

5.14.5 Exception processing vectors

When the CPU accepts an interrupt request, it starts exception processing following completion of the instruction being executed. In exception processing, the following operations branch the program.

- (1) In the minimum mode, the program counter (PC) and system condition flag (SC) are moved to stack and in the maximum mode, the code bank register (CB), PC and SC are moved.
- (2) The branch destination address is read from the exception processing vector corresponding to each exception processing (interrupt) factor and is placed in the PC.

An exception vector is 2 bytes of data in which the top address of each exception (interrupt) processing routine has been stored and the vector addresses correspond to the exception processing factors as shown in Table 5.14.5.1.

Note: An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the top portion of an exception processing routine must be described within the common area (000000H–007FFFH).

Table 5.14.5.1 Vector address and exception processing correspondence

Vector address	Exception processing factor	Priority
000000H	Reset	High
000002H	Zero division	⊥ ngin ↑
000002H	Watchdog timer (<u>NMI</u>)	'
000006H	K07 input interrupt	
000008H	K06 input interrupt	
00000AH	K05 input interrupt	
00000CH	K04 input interrupt	
00000EH	K03 input interrupt	
00000LH	K02 input interrupt	
000010H	K01 input interrupt	
000012H	K00 input interrupt	
000016H	PTM 0 underflow interrupt	
000018H	PTM 0 compare match interrupt	
00001AH	PTM 1 underflow interrupt	
00001CH	PTM 1 compare match interrupt	
00001EH	PTM 2 underflow interrupt	
000020H	PTM 2 compare match interrupt	
000022H	PTM 3 underflow interrupt	
000024H	PTM 3 compare match interrupt	
000026H	System reserved (cannot be used)	
000028H	Serial I/F error interrupt	
00002AH	Serial I/F receiving complete interrupt	
00002CH	Serial I/F transmitting complete interrupt	
00002EH	System reserved (cannot be used)	
000030H	System reserved (cannot be used)	
000032H	System reserved (cannot be used)	
000034H	Clock timer 32 Hz interrupt	
000036H	Clock timer 8 Hz interrupt	
000038H	Clock timer 2 Hz interrupt	
00003AH	Clock timer 1 Hz interrupt	
00003CH	PTM 4 underflow interrupt	
00003EH	PTM 4 compare match interrupt	
000040H	PTM 5 underflow interrupt	
000042H	PTM 5 compare match interrupt	
000044H	PTM 6 underflow interrupt	
000046H	PTM 6 compare match interrupt	
000048H	PTM 7 underflow interrupt	\downarrow
00004AH	PTM 7 compare match interrupt	Low
00004CH	System reserved (cannot be used)	No
00004EH		priority
:	Software interrupt	rating
0000FEH		raung

5.14.6 Control of interrupt

Table 5.14.6.1 shows the interrupt control bits.

Table 5.14.6.1(a) Interrupt control bits

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20	D7	PK01	K00–K07 interrupt priority register	PK01			0	R/W	
	D6	PK00		PSIF1 1	1 1	level 3			
	D5	PSIF1	Serial interface interrupt priority register	1	0	Level 2	0	R/W	
	D4	PSIF0		0 0	1 0	Level 1 Level 0			
	D3	_	_	-		-	-		Constantly "0" when
	D2	_	_	_		-	-		being read
	D1	PTM1	Clock timer interrupt priority register	PTM1 1	1	Level 3	0	R/W	
	D0	PTM0		1 0 0	0 1 0	Level 2 Level 1 Level 0			
00FF21	D7	-	_	-		-	-		Constantly "0" when
	D6	_	_	_		-	-		being read
	D5	PPT3	Programmable timer 3–2 interrupt	PPT3			0	R/W	
	D4	PPT2	priority register	<u>PPT1</u> 1	<u>PPT</u> 1	0 level Level 3			
	D3	PPT1	Programmable timer 1–0 interrupt	1	0	Level 2	0	R/W	
	D2	PPT0	priority register	0 0	1 0	Level 1 Level 0			
	D1	-	_	_		-	-		Constantly "0" when
	D0	_	_	_		-	-		being read
00FF2A	D7	_	_	_		-	-		Constantly "0" when
	D6	_	_	_		-	-		being read
	D5	_	_	_		-	-		
	D4	_	_	_		-	-		
	D3	PPT7	Programmable timer 7–6 interrupt	PPT7	PPT		0	R/W	
	D2	PPT6	priority register	<u>PPT5</u> 1	1	Level 3			
	D1	PPT5	Programmable timer 5–4 interrupt	1 0	0 1	Level 2	0	R/W	
	D0	PPT4	priority register	0	0	Level 1 Level 0			
00FF22	D7	-	_	_		-	-		Constantly "0" when
	D6	_	_	_		-	-		being read
	D5	_	_	_		-	-		
	D4	_	_	_		-	-		
	D3	ETM32	Clock timer 32 Hz interrupt enable register						
	D2	ETM8	Clock timer 8 Hz interrupt enable register	Interr	upt	Interrupt	0	R/W	
	D1	ETM2	Clock timer 2 Hz interrupt enable register	enab	ole	disable		K/W	
	D0	ETM1	Clock timer 1 Hz interrupt enable register						
00FF23	D7	-	_	_		-	-		Constantly "0" when
	D6	_	-	_		-	-		being read
	D5	_	-	_		-	-]
	D4	-	-	_		-	-]
	D3	_	-	-		-	-		1
	D2	ESERR	Serial I/F (error) interrupt enable register			-			
	D1	ESREC	Serial I/F (receiving) interrupt enable register	Interr	-	Interrupt	0	R/W	
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register	enab	ole	disable			

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF24	D7	EK07	K07 interrupt enable					
	D6	EK06	K06 interrupt enable	1				
	D5	EK05	K05 interrupt enable	1				
	D4	EK04	K04 interrupt enable	Interrupt	Interrupt		DAV	
	D3	EK03	K03 interrupt enable	enable	disable	0	R/W	
	D2	EK02	K02 interrupt enable					
	D1	EK01	K01 interrupt enable					
	D0	EK00	K00 interrupt enable					
00FF25	D7	ETC3	PTM3 compare match interrupt enable					
	D6	ETU3	PTM3 underflow interrupt enable					
	D5	ETC2	PTM2 compare match interrupt enable					
	D4	ETU2	PTM2 underflow interrupt enable	Interrupt	Interrupt		DAV	
	D3	ETC1	PTM1 compare match interrupt enable	enable	disable	0	R/W	
	D2	ETU1	PTM1 underflow interrupt enable					
	D1	ETC0	PTM0 compare match interrupt enable					
	D0	ETU0	PTM0 underflow interrupt enable					
00FF2C	D7	ETC7	PTM7 compare match interrupt enable					
	D6	ETU7	PTM7 underflow interrupt enable					
	D5	ETC6	PTM6 compare match interrupt enable					
	D4	ETU6	PTM6 underflow interrupt enable	Interrupt	Interrupt			
	D3	ETC5	PTM5 compare match interrupt enable	enable	disable	0	R/W	
	D2	ETU5	PTM5 underflow interrupt enable					
	D1	ETC4	PTM4 compare match interrupt enable					
	D0	ETU4	PTM4 underflow interrupt enable					
00FF26	D7	_	-	-	-	_		Constantly "0" when
	D6	_	_	-	-	_		being read
	D5	_	_	-	-	_		-
	D4	_	_	-	-	_		
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	(R)	(R)			
	D2	FTM8	Clock timer 8 Hz interrupt factor flag	Generated	Not generated			
	D1	FTM2	Clock timer 2 Hz interrupt factor flag	(W)	(W)	0	R/W	
	D0	FTM1	Clock timer 1 Hz interrupt factor flag	Reset	No operation			
00FF27	D7	_	-	_	_	_		Constantly "0" when
	D6	_	_	_	_	_		being read
	D5	_	_	_	_	_		
	D4	_	_	_	_	_		
	D3	_	-	_	-	_		
	D2	FSERR	Serial I/F (error) interrupt factor flag	(R)	(R)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Generated (W)	Not generated (W)	0	R/W	
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag	Reset	No operation			
00FF28	D7	FK07	K07 interrupt factor flag	(R)	(R)			
	D6	FK06	K06 interrupt factor flag	Interrupt	No interrupt			
		FK05	K05 interrupt factor flag	factor is	factor is			
		FK04	K04 interrupt factor flag	generated	generated		D /11	
	D3	FK03	K03 interrupt factor flag			0	R/W	
		FK02	K02 interrupt factor flag	(W)	(W)			
		FK01	K01 interrupt factor flag	Reset	No operation			
		FK00	K00 interrupt factor flag	1				

Table 5.14.6.1(b) Interrupt control bits

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Interrupt and Standby Status)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF29	D7	FTC3	PTM3 compare match interrupt factor flag	(R)	(R)			
	D6	FTU3	PTM3 underflow interrupt factor flag	Interrupt	No interrupt			
	D5	FTC2	PTM2 compare match interrupt factor flag	factor is	factor is			
	D4	FTU2	PTM2 underflow interrupt factor flag	generated	generated	0	R/W	
	D3	FTC1	PTM1 compare match interrupt factor flag			0	K/W	
	D2	FTU1	PTM1 underflow interrupt factor flag	(W)	(W)			
	D1	FTC0	PTM0 compare match interrupt factor flag	Reset	No operation			
	D0	FTU0	PTM0 underflow interrupt factor flag					
00FF2E	D7	FTC7	PTM7 compare match interrupt factor flag	(R)	(R)			
	D6	FTU7	PTM7 underflow interrupt factor flag	Interrupt	No interrupt			
	D5	FTC6	PTM6 compare match interrupt factor flag	factor is	factor is			
	D4	FTU6	PTM6 underflow interrupt factor flag	generated	generated	0	R/W	
	D3	FTC5	PTM5 compare match interrupt factor flag			0	K/ W	
	D2	FTU5	PTM5 underflow interrupt factor flag	(W)	(W)			
	D1	FTC4	PTM4 compare match interrupt factor flag	Reset	No operation			
	D0	FTU4	PTM4 underflow interrupt factor flag					

Table 5.14.6.1(c) Interrupt control bits

Refer to the explanations on the respective peripheral circuits for the setting content and control method for each bit.

5.14.7 Programming notes

- When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.
- (2) Beware. If the interrupt flags (I0 and I1) have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.
- (3) An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the front portion of an exception processing routine must be described within the common area (000000H–007FFFH).
- (4) Do not execute the SLP instruction for 2 msec after a $\overline{\rm NMI}$ interrupt has occurred (when fosc1 is 32.768 kHz).

6 SUMMARY OF NOTES

6.1 Notes for Low Current Consumption

The S1C88650 can turn circuits, which consume a large amount of power, ON or OFF by control registers.

You can reduce power consumption by creating a program that operates the minimum necessary circuits using these control registers.

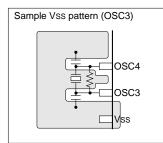
Next, which circuit systems' operation can be controlled and their control registers (instructions) are explained. You should refer to these when programming.

See Chapter 8, "ELECTRICAL CHARACTERIS-TICS" for the current consumption.

Refer to "Programming notes" in each peripheral section for precautions of each peripheral circuit.

Circuit type	Control register (Instruction)	Status at time of initial resetting
CPU	HALT and SLP instructions	Operation status
Oscillation circuit	CLKCHG, SOSC3	OSC3 clock (CLKCHG = "1")
		OSC3 oscillation ON (SOSC3 = "1")
Power voltage booster	DBON	OFF status (DBON = "0")
LCD controller	LCDC0, LCDC1	Drive OFF (LCDC0 = LCDC1 = "0")
SVD circuit	SVDON	OFF status (SVDON = "0")
Heavy lord protection	HLMOD	OFF status (HLMOD = "0")

Table 6.1.1 Circuit systems and control registers


6.2 Precautions on Mounting

<Oscillation Circuit>

• Oscillation characteristics change depending on conditions (board pattern, components used, etc.).

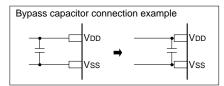
In particular, when a ceramic or crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance.

- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
 - (1) Components which are connected to the OSC1, OSC2, OSC3 and OSC4 terminals, such as oscillators, resistors and capacitors, should be connected in the shortest line.
 - (2) As shown in the right hand figure, make a Vss pattern as large as possible at circumscription of the OSC1, OSC2, OSC3 and OSC4 terminals and the components connected to these terminals. Furthermore, do not use this Vss pattern for any purpose other than the oscillation system.

• In order to prevent unstable operation of the oscillation circuit due to current leak between OSC1/OSC3 and VDD, please keep enough distance between OSC1/OSC3 and VDD or other signals on the board pattern.

<Reset Circuit>

• The power-on reset signal which is input to the RESET terminal changes depending on conditions (power rise time, components used, board pattern, etc.).

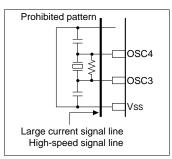

Decide the time constant of the capacitor and resistor after enough tests have been completed with the application product.

When the built-in pull-up resistor of the $\overrightarrow{\text{RESET}}$ terminal is used, take into consideration dispersion of the resistance for setting the constant.

• In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components such as capacitors and resistors should be connected to the RESET terminal in the shortest line.

<Power Supply Circuit>

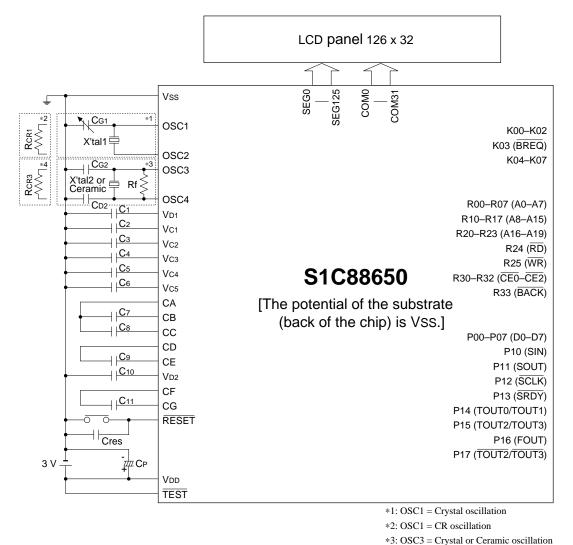
- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
 - (1) The power supply should be connected to the VDD and Vss terminal with patterns as short and large as possible.
 - (2) When connecting between the VDD and VSS terminals with a bypass capacitor, the terminals should be connected as short as possible.



(3) Components which are connected to the VD1, VC1, VC2, VC3, VC4 and VC5 terminals, such as capacitors and resistors, should be connected in the shortest line. In particular, the VC1, VC2, VC3, VC4 and VC5 voltages affect the display quality.

<Arrangement of Signal Lines>

- In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit.
- When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction.


Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation unit.

<Precautions for Visible Radiation (when bare chip is mounted)>

- Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to malfunction. When developing products which use this IC, consider the following precautions to prevent malfunctions caused by visible radiations.
 - (1) Design the product and implement the IC on the board so that it is shielded from visible radiation in actual use.
 - (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
 - (3) As well as the face of the IC, shield the back and side too.

7 BASIC EXTERNAL WIRING DIAGRAM

Recommended values for external parts

Symbol	Name	Recommended value
X'tal1	Crystal oscillator	32.768 kHz, CI(Max.) = 35 k Ω
CG1	Trimmer capacitor	0–25 pF
RCR1	Resistor for CR oscillation	1.5 ΜΩ
X'tal2	Crystal oscillator	4 MHz
Ceramic	Ceramic oscillator	4 MHz
Rf	Feedback resistor	1 MΩ
CG2	Gate capacitor	15 pF (Crystal oscillation)
		30 pF (Ceramic oscillation)
CD2	Drain capacitor	15 pF (Crystal oscillation)
		30 pF (Ceramic oscillation)
RCR3	Resistor for CR oscillation	40 kΩ

Symbol	Name	Recommended value
C1	Capacitor between Vss and VD1	0.1 μF
C2	Capacitor between Vss and Vc1	0.1 μF
C3	Capacitor between Vss and Vc2	0.1 μF
C4	Capacitor between Vss and Vc3	0.1 μF
C5	Capacitor between Vss and Vc4	0.1 µF
C6	Capacitor between Vss and Vc5	0.1 μF
C7–C9	Booster capacitors	0.1 μF
C10	Capacitor between Vss and VD2	0.1 μF
C11	Booster capacitor	0.1 μF
Ср	Capacitor for power supply	3.3 μF
Cres	Capacitor for RESET terminal	0.47 µF

*4: OSC3 = CR oscillation

Note: The above table is simply an example, and is not guaranteed to work.

8 ELECTRICAL CHARACTERISTICS

8.1 Absolute Maximum Rating

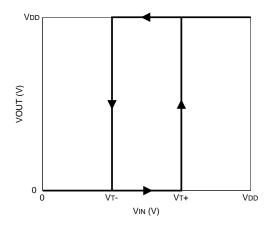
				(Vss =	= 0 V)
Item	Symbol	Condition	Rated value	Unit	Note
Power voltage	VDD		-0.3 to +4.7	V	
Liquid crystal power voltage	VC5		-0.3 to +6.0	V	
Input voltage	VI		-0.3 to VDD + 0.3	V	
Output voltage	Vo		-0.3 to VDD + 0.3	V	
High level output current	Іон	1 terminal	-5	mA	
		Total of all terminals	-20	mA	
Low level output current	Iol	1 terminal	5	mA	
		Total of all terminals	20	mA	
Permitted loss	PD		200	mW	1
Operating temperature	Topr		-20 to +70	°C	
Storage temperature	Tstg		-65 to +150	°C	
Soldering temperature / time	Tsol		260°C, 10 sec (lead section)	-	

Note) 1 In case of plastic package.

8.2 Recommended Operating Conditions

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Operating power voltage	VDD		1.8		3.6	V	
Operating frequency	fosc1		30	32.768	200	kHz	
	fosc3	CR oscillation	0.03		2.2	MHz	
		Crystal/ceramic oscillation	0.03		8.2	MHz	
Capacitor between VD1 and VSS	Cı			0.1		μF	
Capacitor between VC1 and VSS	C2			0.1		μF	1
Capacitor between VC2 and Vss	C3			0.1		μF	1
Capacitor between VC3 and VSS	C4			0.1		μF	1
Capacitor between VC4 and Vss	C5			0.1		μF	1
Capacitor between VC5 and VSS	C6			0.1		μF	1
Capacitor between CA and CB	C7			0.1		μF	1
Capacitor between CA and CC	C8			0.1		μF	1
Capacitor between CD and CE	C9			0.1		μF	1
Capacitor between VD2 and VSS	C10			0.1		μF	1
Capacitor between CF and CG	C11			0.1		μF	1

Note) 1 When LCD drive power is not used, the capacitor is not necessary.


In this case, leave the VC1 to VC5 and CA to CG terminals open.

8.3 DC Characteristics

Item	Symbol	ool Condition Min. Typ. M		Max.	Unit	Note	
High level input voltage	VIH	Kxx, Pxx	0.8Vdd		VDD	V	
Low level input voltage	VIL	Kxx, Pxx	0		0.2Vdd	V	
High level schmitt input voltage (1)	VT1+	RESET, MCU/MPU	0.5Vdd		0.9Vdd	V	
Low level schmitt input voltage (1)	VT1-	RESET, MCU/MPU	0.1Vdd		0.5Vdd	V	
High level schmitt input voltage (2)	VT2+	Kxx	0.5Vdd		0.9Vdd	V	1
Low level schmitt input voltage (2)	VT2-	Kxx	0.1Vdd		0.5Vdd	V	1
High level output current	Іон	PXX, RXX, VOH = 0.9 VDD			-0.5	mA	
Low level output current	Iol	Pxx, Rxx, VOL = 0.1 VDD	0.5			mA	
Input leak current	Ili	Kxx, Pxx, RESET, MCU/MPU	-1		1	μΑ	
Output leak current	Ilo	Pxx, Rxx	-1		1	μΑ	
Input pull-up resistance	Rin	Kxx, Pxx, RESET, MCU/MPU	100		500	kΩ	2
Input terminal capacitance	Cin	Kxx, Pxx			15	pF	
		$V_{IN} = 0 V$, $f = 1 MHz$, $Ta = 25^{\circ}C$					
Segment/Common output current	ISEGH	SEGxx, COMxx, VSEGH = VC5-0.1 V			-5	μΑ	
	ISEGL	SEGxx, COMxx, VSEGL = 0.1 V	5			μA	

Note) 1 When CMOS Schmitt level is selected by mask option.

2 When addition of pull-up resistor is selected by mask option.

8.4 Analog Circuit Characteristics

LCD drive circuit

The typical values in the following LCD driver characteristics varies depending on the panel load (panel size, number of display pixels and display contents), so evaluate them by connecting to the actually used LCD panel. Refer to Section 8.8, "Characteristics Curves" for the load characteristic.

Item	Symbol	Conditio	'n	Min.	Тур.	Max.	Unit	Note
LCD drive voltage	VC1	*1		0.18•Vc5		0.22•Vc5	V	
	VC2	*2	0.39•Vc5 0.43				V	
	VC3	*3		0.59•Vc5		0.63•Vc5	V	
	VC4	*4		0.79•Vc5		0.83•Vc5	V	
	VC5	*5	LCX = 0H		4.20		V	
			LCX = 1H] [4.30	1	V	
			LCX = 2H		4.40		V	
			LCX = 3H		4.50		V	
			LCX = 4H	1 [4.60 4.70 4.80		V	
			LCX = 5H				V	
			LCX = 6H	1		1	V	
			LCX = 7H	Typ×0.94	4.90	Typ×1.06	V	
			LCX = 8H		5.00		V	
			LCX = 9H		5.10	1	V	
			LCX = AH		5.20		V	
			LCX = BH	1	5.30	1	V	
			LCX = CH		5.40		V	
			LCX = DH	1	5.50		V	
			LCX = EH		5.60		V	
			LCX = FH		5.70		V	

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, Ta = 25°C, C1-C11 = 0.1 µF, When a checker pattern is displayed, No panel load

*1 Connects 1 M\Omega load resistor between Vss and Vc1.

*2 Connects 1 M\Omega load resistor between Vss and Vc2.

*3 Connects 1 M\Omega load resistor between Vss and Vc3.

*4 Connects 1 M\Omega load resistor between Vss and Vc4.

*5 Connects 1 M\Omega load resistor between Vss and Vc5.

SVD circuit

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
SVD voltage	VSVD	SVDS0–3 = "0"		-		V	
		SVDS0-3 = "1"		-]	V	
		SVDS0-3 = "2"		-		V	
		SVDS0–3 = "3"		1.8		V	
		SVDS0–3 = "4"		1.85		V	
		SVDS0-3 = "5"		1.9		V	
		SVDS0–3 = "6"		1.95		V	
		SVDS0-3 = "7"		2.0	_]	V
		SVDS0–3 = "8"		2.05		V	
		SVDS0–3 = "9"	Typ×0.91	2.1	Typ×1.09	V	
		SVDS0–3 = "10"		2.2		V	
		SVDS0–3 = "11"		2.3			
		SVDS0–3 = "12"		2.4]	V	
		SVDS0–3 = "13"		2.5		V	
		SVDS0-3 = "14"	1	2.6	1	V	
		SVDS0–3 = "15"]	2.7	1	V	
SVD circuit response time	tsvd				500	μs	

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Current consumption	ISLP	OSC1 = OFF, OSC3 = OFF		1	2.5	μΑ	
in SLEEP mode							
Current consumption	IHALT1	OSC1 = 32kHz Crystal, OSC3 = OFF		2.5	5	μΑ	
in HALT mode	IHALT2	OSC1 = 32kHz CR, OSC3 = OFF		10	20	μΑ	
	IHALT3	OSC1 = 32kHz Crystal, OSC3 = 8MHz Ceramic		250	450	μΑ	
	IHALT4	OSC1 = 32kHz CR, OSC3 = 2MHz CR		220	450	μΑ	
Current consumption	IEXE1	OSC1 = 32kHz Crystal, OSC3 = OFF		9	16	μΑ	
during execution	IEXE2	OSC1 = 32kHz CR, OSC3 = OFF		15	30	μΑ	
	IEXE3	OSC1 = 32kHz Crystal, OSC3 = 8MHz Ceramic		1700	3000	μΑ	
	IEXE4	OSC1 = 32kHz CR, OSC3 = 2MHz CR		600	1200	μΑ	
Current consumption	IHVL1	OSC1 = 32kHz Crystal, OSC3 = OFF, HLMOD = H		15	27	μΑ	
during execution in heavy	IHVL2	OSC1 = 32kHz CR, OSC3 = OFF, HLMOD = H		20	40	μΑ	
load protection mode							
LCD circuit current	ILCD1	LCDCx = All on, LCx = FH, fosc1 = 32.768kHz,		5	10	μΑ	1
		$V_{DD} = 2.5 \text{ to } 3.6 \text{V}$					
LCD circuit current	ILCD1H	LCDCx = All on, LCx = FH, fosc1 = 32.768kHz,		15	30	μΑ	2
in heavy load protection mode		HLMOD = H					
LCD circuit current when the	ILCD2	LCDCx = All on, LCx = FH, fosc1 = 32.768kHz,		10	20	μΑ	3
power voltage booster is active		DBON = H, VDD = 1.8 to 2.5V					
LCD circuit current in heavy load	Ilcd2h	LCDCx = All on, LCx = FH, fosc1 = 32.768kHz,		30	60	μΑ	4
protection mode when the		DBON = H, VDD = 1.8 to 2.5V, HLMOD = H					
power voltage booster is active							
SVD circuit current	Isvd	SVDON = ON		5	10	μA	5

8.5 Power Current Consumption

Note) 1 This value is added to the current consumption during execution when the LCD circuit is active. Current consumption increases according to the display contents and panel load.

2 This value is added to the current consumption during execution in heavy load protection mode when the LCD circuit is active. Current consumption increases according to the display contents and panel load.

3 This value is added to the current consumption during execution when the power voltage booster and the LCD circuit are active. Current consumption increases according to the display contents and panel load.

4 This value is added to the current consumption during execution in heavy load protection mode when the power voltage booster and the LCD circuit are active. Current consumption increases according to the display contents and panel load.

5 This value is added to the current consumption during execution or current consumption during execution in heavy load protection mode when the SVD circuit is active.

8.6 AC Characteristics

■ Operating range Condition: VDD = 1.8 to 3.6 V, Vss = 0 V, Ta = -20 to 70°C

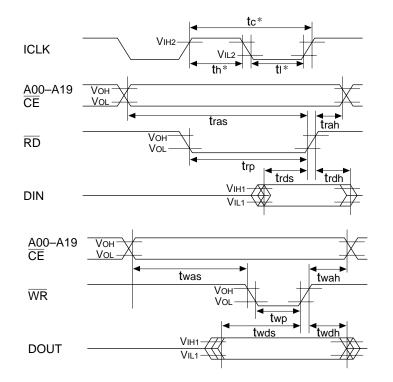
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Operating frequency	fosc1	VDD = 1.8 to 3.6 V	30	32.768	200	kHz	
	fosc3		0.03		8.2	MHz	
Instruction execution time	tcy	1-cycle instruction	10	61	67	μs	
(during operation with OSC1 clock)		2-cycle instruction	20	122	133	μs	
		3-cycle instruction	30	183	200	μs	
		4-cycle instruction	40	244	267	μs	
		5-cycle instruction	50	305	333	μs	
		6-cycle instruction	60	366	400	μs	
Instruction execution time	tcy	1-cycle instruction	0.24		66.7	μs	
(during operation with OSC3 clock)		2-cycle instruction	0.49		133.3	μs	
		3-cycle instruction	0.73		200.0	μs	
		4-cycle instruction	0.98		266.7	μs	
		5-cycle instruction	1.22		333.3	μs	
		6-cycle instruction	1.46		400.0	μs	

External memory access

Read cycle

Condition: VDD = 1.8 to 3.6 V, VSS = 0 V, $Ta = 25^{\circ}C$, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VIH2 = 1.6 V, VIL2 = 0.6 V, VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in read cycle	tras	tc+tl-50+n•tc/2			ns	1
Address hold time in read cycle	trah	th-40			ns	
Read signal pulse width	trp	tc-10+n•tc/2			ns	1
Data input set-up time in read cycle	trds	150			ns	
Data input hold time in read cycle	trdh	0			ns	


Note) 1 Substitute the number of states for wait insertion in n.

Write cycle

Condition: VDD = 1.8 to 3.6 V, VSS = 0 V, $Ta = 25^{\circ}C$, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VIH2 = 1.6 V, VIL2 = 0.6 V, VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in write cycle	twas	tc-90			ns	
Address hold time in write cycle	twah	th-40			ns	
Write signal pulse width	twp	tl-20+n•tc/2			ns	1
Data output set-up time in write cycle	twds	tc-90+n•tc/2			ns	1
Data output hold time in write cycle	twdh	th-40		th+40	ns	

Note) 1 Substitute the number of states for wait insertion in n.

* In the case of crystal oscillation and ceramic oscillation: th = 0.5tc ± 0.05 tc, tl = tc - th (1/tc: oscillation frequency)

* In the case of CR oscillation: th = 0.5tc ± 0.10 tc, tl = tc - th (1/tc: oscillation frequency)

8 ELECTRICAL CHARACTERISTICS

Serial interface

Clock synchronous master mode

 $\textit{Condition: Vdd} = 1.8 \text{ to } 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Ta} = 25^{\circ}\text{C}, \text{Vihi} = 0.8 \text{Vdd}, \text{Vili} = 0.2 \text{Vdd}, \text{Voh} = 0.8 \text{Vdd}, \text{Vol} = 0.2 \text{Vdd}, \text{Vol} =$

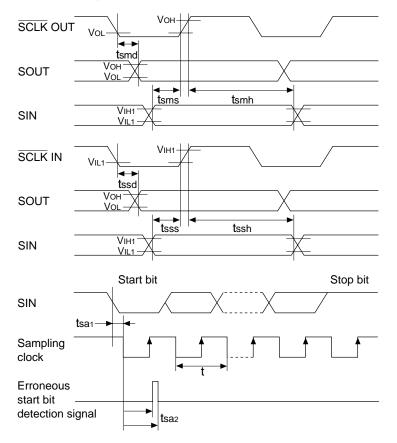
Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tsmd			100	ns	
Receiving data input set-up time	tsms	250			ns	
Receiving data input hold time	tsmh	100			ns	

Clock synchronous slave mode

 $\textit{Condition: Vdd} = 1.8 \text{ to } 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Ta} = 25^{\circ}\text{C}, \text{Vihi} = 0.8 \text{Vdd}, \text{Vili} = 0.2 \text{Vdd}, \text{Voh} = 0.8 \text{Vdd}, \text{Vol} = 0.2 \text{Vdd} = 0.2$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tssd			250	ns	
Receiving data input set-up time	tsss	100			ns	
Receiving data input hold time	tssh	100			ns	

Asynchronous system

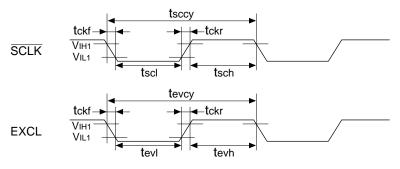

Condition: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Start bit detection error time	tsa1	0		t/16	s	1
Erroneous start bit detection range time	tsa2	9t/16		10t/16	s	2

Note) 1 Start bit detection error time is a logical delay time from inputting the start bit until internal sampling begins operating. (Time as far as AC is excluded.)

2 Erroneous start bit detection range time is a logical range to detect whether a LOW level (start bit) has been input again after a start bit has been detected and the internal sampling clock has started.

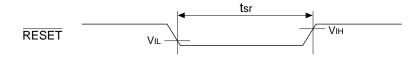
When a HIGH level is detected, the start bit detection circuit is reset and goes into a wait status until the next start bit. (Time as far as AC is excluded.)



Input clock

• SCLK, EXCL input clock

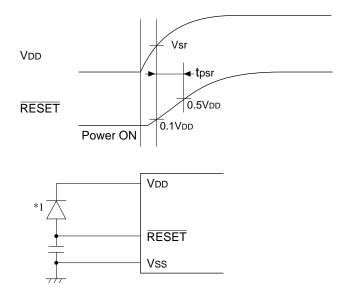
Condition: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$, VIH1 = 0.8VDD, VIL1 = 0.2VDD


Item		Symbol	Min.	Тур.	Max.	Unit	Note
SCLK input clock time	Cycle time	tsccy	2			μs	
	"H" pulse width	tsch	1			μs	
	"L" pulse width	tscl	1			μs	
EXCL input clock time	Cycle time	tevcy	64/fosc1			s	
(with noise rejecter)	"H" pulse width	tevh	32/fosci			s	
	"L" pulse width	tevl	32/fosc1			s	
EXCL input clock time	Cycle time	tevcy	2			μs	
(without noise rejecter)	"H" pulse width	tevh	1			μs	
	"L" pulse width	tevl	1			μs	
Input clock rising time		tckr			25	ns	
Input clock falling time		tckf			25	ns	

RESET input clock

Condition: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$, VIH = 0.5VDD, VIL = 0.1VDD

Item	Symbol	Min.	Тур.	Max.	Unit	Note
RESET input time	tsr	100			μs	



8 ELECTRICAL CHARACTERISTICS

Power ON reset using an external capacitor

Condition: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Operating power voltage	Vsr	1.8			V	
RESET input time	tpsr	10			ms	

*1 Because the potential of the $\overline{\text{RESET}}$ terminal not reached VDD level or higher.

8.7 Oscillation Characteristics

Oscillation characteristics change depending on conditions (board pattern, components used, etc.). Use the following characteristics as reference values. In particular, when a ceramic oscillator or crystal oscillator is used for OSC3, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance. The oscillation start time is important because it becomes the wait time when OSC3 clock is used. (If OSC3 is used as CPU clock before oscillation stabilizes, the CPU may malfunction.)

OSC1 (Crystal)

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$,

Crystal oscillator = Q12C2000 (Ri = 30 kΩ Typ.)*, CG1 = 25 pF, CD1 = Built-in

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				3	s	
External gate capacitance	CG1	Including board capacitance	5		25	pF	
Built-in drain capacitance	CD1	In case of the chip		10		pF	
Frequency/IC deviation	∂f/∂IC	VDD = constant	-10		10	ppm	
Frequency/power voltage deviation	∂f/∂V				1	ppm/V	
Frequency adjustment range	∂f/∂CG	$V_{DD} = constant, C_G = 5 to 25 pF$	25			ppm	

* Q12C2000 Made by Seiko Epson corporation

OSC1 (CR)

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				100	μs	
Frequency/IC deviation	∂f/∂IC	Rcr = constant	-25		25	%	

OSC3 (Crystal)

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$,

Crystal oscillator = Q21CA301*, $RF = 1 M\Omega$, CG2 = CD2 = 15 pF

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				10	ms	1

* Q21CA301 Made by Seiko Epson corporation

Note) 1 The crystal oscillation start time changes by the crystal oscillator to be used, CG2 and CD2.

OSC3 (Ceramic)

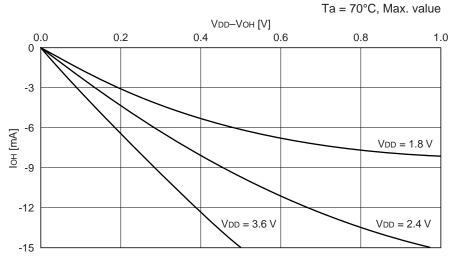
Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$,

Ceramic oscillator = KBR-4.0MSB/KBR-8.0MSB*, $R_F = 1 M\Omega$, $C_{G2} = C_{D2} = 30 pF$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				1	ms	1
		1 II					

* KBR-4.0MSB/KBR-8.0MSB Made by Kyocera

Note) 1 The ceramic oscillation start time changes by the ceramic oscillator to be used, CG2 and CD2.


OSC3 (CR)

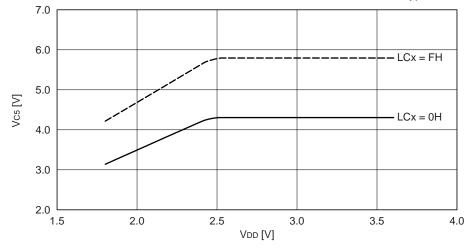
Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, $Ta = 25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				100	μs	
Frequency/IC deviation	∂f/∂IC	Rcr = constant	-25		25	%	

8.8 Characteristics Curves (reference value)

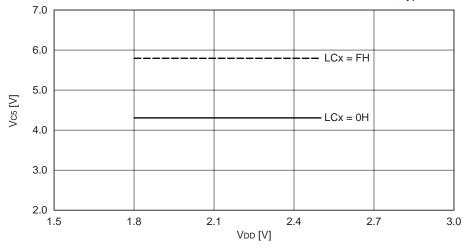
■ High level output current-voltage characteristic

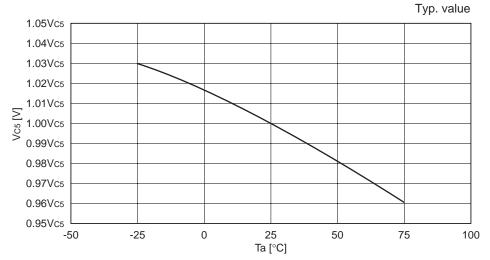
■ Low level output current-voltage characteristic


Ta = 70°C, Min. value

LCD drive voltage-supply voltage characteristic (when the power voltage booster is not used)

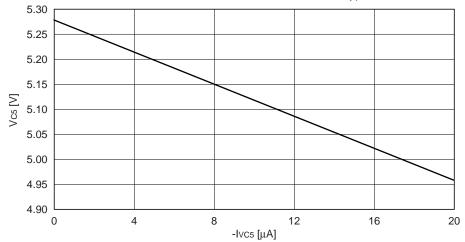
Connects 1 M Ω load resistor between Vss and Vcs. (no panel load)



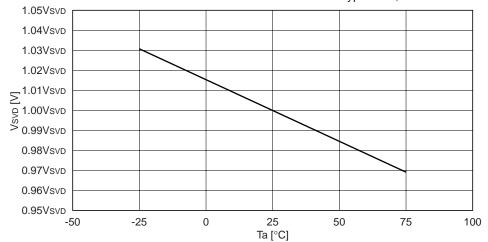

LCD drive voltage-supply voltage characteristic (when the power voltage booster is used)

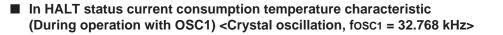
Connects 1 M Ω load resistor between Vss and Vc5. (no panel load)

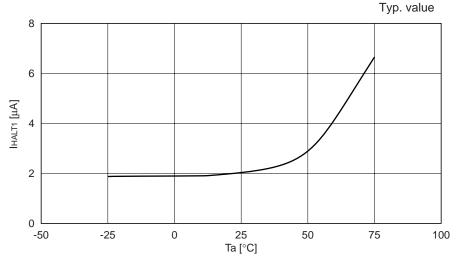
Ta = 25°C, Typ. value



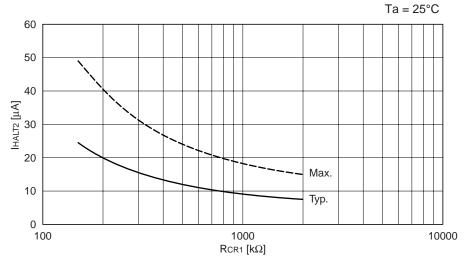
■ LCD drive voltage-ambient temperature characteristic

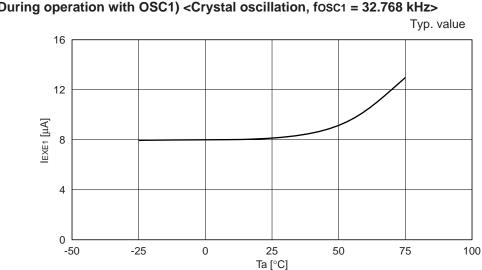

■ LCD drive voltage-load characteristic

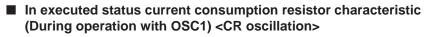

Ta = 25°C, Typ. value, LCx = 8H

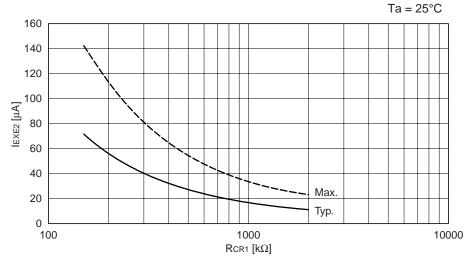


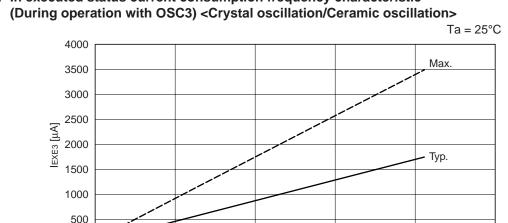
SVD voltage-ambient temperature characteristic


Typ. value, SVDSx = FH



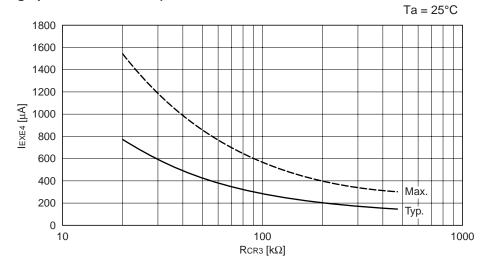



In HALT status current consumption resistor characteristic (During operation with OSC1) <CR oscillation>



In executed status current consumption temperature characteristic (During operation with OSC1) <Crystal oscillation, fosc1 = 32.768 kHz>

0 0.0

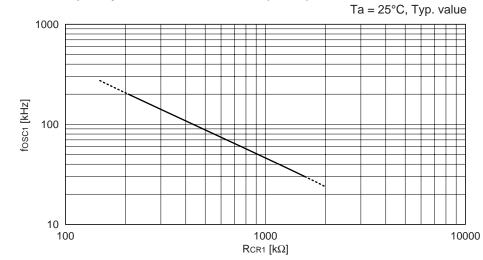


4.0

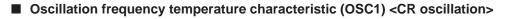
fosc3 [MHz]

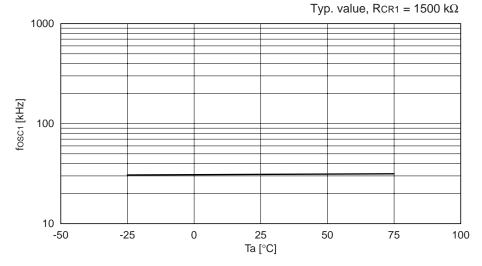
In executed status current consumption resistor characteristic (During operation with OSC3) <CR oscillation>

2.0

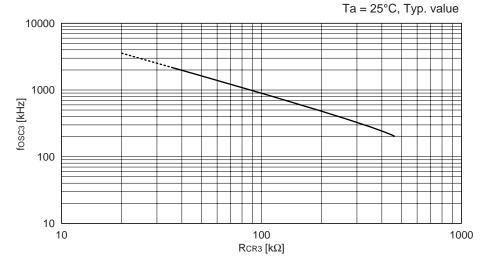


6.0

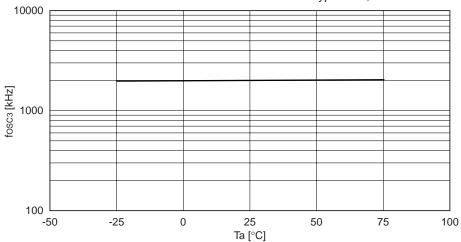

8.0


10.0

■ In executed status current consumption frequency characteristic

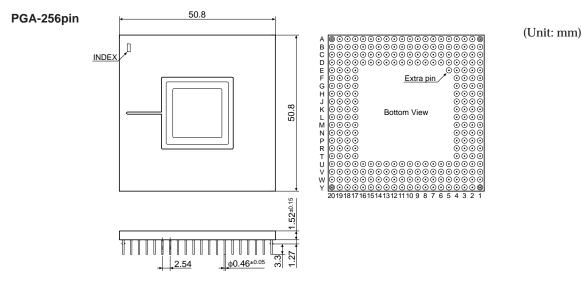


■ Oscillation frequency resistor characteristic (OSC1) <CR oscillation>



■ Oscillation frequency temperature characteristic (OSC3) <CR oscillation> Typ. value, RCR3 = 40 k Ω

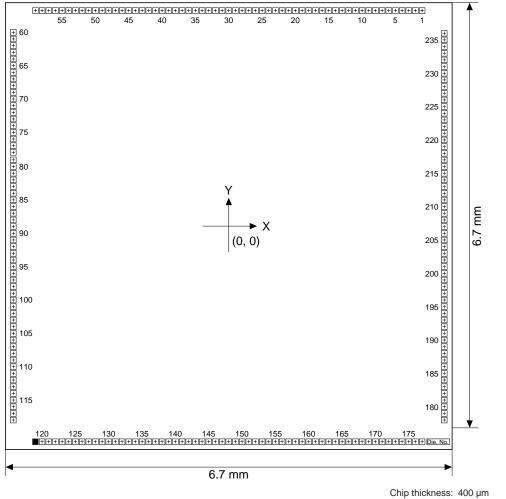
9 PACKAGE

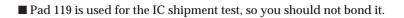

9.1 Plastic Package

QFP22-256pin

30^{±0.4} 28^{±0.1} 192 129 193 128 ____65 256 **28**±0.1 30±0.4 INDEX Ш 64 0.16^{+0.05} 0.4 .4±0.1 0.125-0.025 ¥ 0° 7 10° ö <u>0.5±0.2</u> 1

(Unit: mm)


9.2 Ceramic Package for Test Samples


Pin	No.	Pin name	Pin	No.	Pin name	Pin	No.	Pin name	Pin	No.	Pin name	Pin	No.	Pin name
1	A1	N.C.	53	U1	R20/A16	105	Y14	SEG19	157	M20	SEG64	209	A16	SEG110
2	D4	N.C.	54	P4	R21/A17	106	U12	SEG20	158	L17	SEG65	210	D13	SEG111
3	C2	VDD	55	U2	R22/A18	107	W14	SEG21	159	L20	SEG66	211	B14	SEG112
4	D3	OSC3	56	T3	R23/A19	108	V12	SEG22	160	L19	SEG67	212	C13	SEG113
5	B1	OSC4	57	V1	R24/RD	109	Y15	SEG23	161	K20	SEG68	213	A15	SEG114
6	E4	Vss	58	R4	R25/WR	110	V13	SEG24	162	K19	SEG69	214	C12	SEG115
7	D2	VDI	59	V2	R30/CE0	111	W15	SEG25	163	J20	SEG70	215	B13	SEG116
8	E3	OSC1	60	U3	R31/CE1	112	U13	SEG26	164	K17	SEG71	216	D12	SEG110 SEG117
9	CI	OSC2	61	W1	VDD	112	Y16	SEG20	165	H20	SEG72	217	A14	SEG117 SEG118
10	F4	TEST	62	T4	N.C.	113	V14	SEG27	165	K18	SEG72 SEG73	217	B12	SEG118 SEG119
10	E2	RESET	63	W2	N.C.	114	W14 W16	SEG28 SEG29	167	H19	SEG75 SEG74	218	A13	SEG119 SEG120
		MPU/MPU	63 64	V3		-	V15			J19		219	C11	
12	F3		-		N.C.	116		SEG30	168		SEG75			SEG121
13	D1	K07/EXCL3	65	Y1	N.C.	117	Y17	SEG31	169	G20	SEG76	221	A12	SEG122
14	G4	K06/EXCL2	66	U4	N.C.	118	U14	SEG32	170	J17	SEG77	222	D11	SEG123
15	F2	K05/EXCL1	67	W3	Vss	119	W17	SEG33	171	G19	SEG78	223	A11	SEG124
16	G3	K04/EXCL0	68	V4	R32/CE2	120	V16	SEG34	172	J18	SEG79	224	B11	SEG125
17	E1	K03/BREQ	69	Y2	R33/BACK	121	Y18	SEG35	173	F20	SEG80	225	A10	COM31
18	H4	K02	70	U5	COM0	122	U15	SEG36	174	H18	SEG81	226	B10	COM30
19	G2	K01	71	W4	COM1	123	W18	SEG37	175	F19	SEG82	227	A9	COM29
20	H3	K00	72	V5	COM2	124	V17	SEG38	176	H17	SEG83	228	D10	COM28
21	F1	P17/TOUT2/TOUT3	73	Y3	COM3	125	Y19	Vss	177	E20	SEG84	229	A8	COM27
22	J3	P16/FOUT	74	U6	COM4	126	U16	N.C.	178	G18	SEG85	230	C10	COM26
23	H2	P15/TOUT2/TOUT3	75	W5	COM5	127	W19	N.C.	179	E19	SEG86	231	B8	COM25
24	J4	P14/TOUT0/TOUT1	76	V6	COM6	128	V18	N.C.	180	F18	SEG87	232	B9	COM24
25	G1	P13/SRDY	77	Y4	COM7	129	Y20	N.C.	181	D20	SEG88	233	A7	COM23
26	J2	P12/SCLK	78	U7	COM8	130	U17	N.C.	182	G17	SEG89	234	D9	COM22
27	H1	P11/SOUT	79	W6	COM9	131	V19	TEST	183	D19	SEG90	235	B7	COM21
28	K3	P10/SIN	80	V7	COM10	132	U18	SEG39	184	E18	SEG91	236	C9	COM20
29	J1	P07/D7	81	Y5	COM11	133	W20	SEG40	185	C20	SEG92	237	A6	COM19
30	K4	P06/D6	82	U8	COM12	134	T17	SEG41	186	F17	SEG93	238	C8	COM18
31	K1	P05/D5	83	W7	COM13	135	U19	SEG42	187	C19	SEG94	239	B6	COM17
32	K2	P04/D4	84	V8	COM14	136	T18	SEG43	188	D18	SEG95	240	D8	COM16
33	L1	P03/D3	85	Y6	COM15	137	V20	SEG44	189	B20	SEG96	241	A5	VD2
34	L2	P02/D2	86	V9	SEG0	138	R17	SEG45	190	E17	N.C.	242	C7	CG
35	M1	P01/D1	87	W8	SEG1	139	T19	SEG46	191	B19	N.C.	243	B5	CF
36	L4	P00/D0	88	U9	SEG2	140	R18	SEG47	192	C18	N.C.	244	C6	CE
37	N1	R00/A0	89	Y7	SEG3	141	U20	SEG48	193	A20	N.C.	245	A4	CD
38	L3	R01/A1	90	W9	SEG4	142	P17	SEG49	194	D17	N.C.	246	D7	CC
39	N2	R02/A2	91	Y8	SEG5	143	R19	SEG50	195	B18	Vss	247	B4	CB
40	M2	R03/A3	92	V10	SEG6	144	P18	SEG51	196	C17	SEG97	248	C5	CA
41	P1	R04/A4	93	Y9	SEG7	145	T20	SEG52	197	A19	SEG98	249	A3	VC5
42	M4	R05/A5	94	U10	SEG8	146	N17	SEG53	198	D16	SEG99	250	D6	VC4
43	P2	R06/A6	95	Y10	SEG9	147	P19	SEG54	199	B17	SEG100	251	B3	VC3
44	M3	R07/A7	96	W10	SEG10	148	N18	SEG55	200	C16	SEG101	252	C4	VC2
45	R1	R10/A8	97	Y11	SEG11	149	R20	SEG56	201	A18	SEG102	253	A2	VCI
46	N3	R11/A9	98	W11	SEG12	150	M18	SEG57	202	D15	SEG102	254	D5	N.C.
47	R2	R12/A10	99	Y12	SEG12 SEG13	151	N19	SEG58	202	B16	SEG104	255	B2	N.C.
48	N4	R12/A10	100	U11	SEG14	152	M17	SEG59	203	C15	SEG105	256	C3	N.C.
49	T1	R14/A12	101	Y13	SEG14 SEG15	152	P20	SEG60	205	A17	SEG105		_	-
50	P3	R15/A13	101	V11	SEG15 SEG16	155	M19	SEG61	205	D14	SEG100	_		_
51	T2	R15/A13 R16/A14	102	W13	SEG10 SEG17	154	N20	SEG62	200	B15	SEG107	_		_
52	R3	R10/A14 R17/A15	103	W13 W12	SEG17 SEG18	155	L18	SEG63	207	C14	SEG108			
34	KJ KJ	K1//A15	104	112	51010	150	L10	51005	200	0.14	510107	_	_	-

10 PAD LAYOUT

10.1 Diagram of Pad Layout

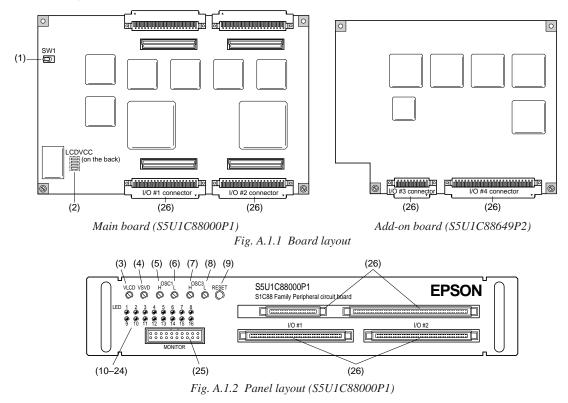
Pad opening: 90 µm

10.2 Pad Coordinates

(Unit: mm)

									(Ui	nit: mm)					
	Pad	Coord	inates		Pad	Coord	inates		Pad	Coord	inates		Pad	Coord	linates
No.	Name	Х	Y	No.	Name	Х	Y	No.	Name	Х	Y	No.	Name	Х	Y
1	VDD	2.900	3.232	60	Vss	-3.232	2.907	119	TEST	-2.900	-3.232	178	Vss	3.232	-2.907
2	OSC3	2.800	3.232	61	R32/CE2	-3.232	2.807	120	SEG39	-2.800	-3.232	179	SEG97	3.232	-2.807
3	OSC4	2.700	3.232	62	R33/BACK	-3.232	2.707	121	SEG40	-2.700	-3.232	180	SEG98	3.232	-2.707
4	Vss	2.600	3.232	63	COM0	-3.232	2.607	122	SEG41	-2.600	-3.232	181	SEG99	3.232	-2.607
5	VDI	2.500	3.232	64	COM1	-3.232	2.507	123	SEG42	-2.500	-3.232	182	SEG100	3.232	-2.507
6	OSC1	2.400	3.232	65	COM2	-3.232	2.407	123	SEG42 SEG43	-2.400	-3.232	183	SEG100	3.232	-2.407
7	OSC2	2.300	3.232	66	COM2 COM3	-3.232	2.307	124	SEG45 SEG44	-2.300	-3.232	185	SEG102	3.232	-2.307
	TEST														
8		2.200	3.232	67	COM4	-3.232	2.207	126	SEG45	-2.200	-3.232	185	SEG103	3.232	-2.207
9	RESET	2.100	3.232	68	COM5	-3.232	2.107	127	SEG46	-2.100	-3.232	186	SEG104	3.232	-2.107
10	MCU/MPU	2.000	3.232	69	COM6	-3.232	2.007	128	SEG47	-2.000	-3.232	187	SEG105	3.232	-2.007
11	K07/EXCL3	1.900	3.232	70	COM7	-3.232	1.907	129	SEG48	-1.900	-3.232	188	SEG106	3.232	-1.907
12	K06/EXCL2	1.800	3.232	71	COM8	-3.232	1.807	130	SEG49	-1.800	-3.232	189	SEG107	3.232	-1.807
13	K05/EXCL1	1.700	3.232	72	COM9	-3.232	1.707	131	SEG50	-1.700	-3.232	190	SEG108	3.232	-1.707
14	K04/EXCL0	1.600	3.232	73	COM10	-3.232	1.607	132	SEG51	-1.600	-3.232	191	SEG109	3.232	-1.607
15	K03/BREQ	1.500	3.232	74	COM11	-3.232	1.507	133	SEG52	-1.500	-3.232	192	SEG110	3.232	-1.507
16	K02	1.400	3.232	75	COM12	-3.232	1.407	134	SEG53	-1.400	-3.232	193	SEG111	3.232	-1.407
17	K01	1.300	3.232	76	COM13	-3.232	1.307	135	SEG54	-1.300	-3.232	194	SEG112	3.232	-1.307
18	K00	1.200	3.232	77	COM14	-3.232	1.207	136	SEG55	-1.200	-3.232	195	SEG113	3.232	-1.207
19	P17/TOUT2/TOUT3	1.100	3.232	78	COM15	-3.232	1.107	137	SEG56	-1.100	-3.232	196	SEG114	3.232	-1.107
20	P16/FOUT	1.000	3.232	79	SEG0	-3.232	0.994	138	SEG57	-1.000	-3.232	197	SEG115	3.232	-1.007
20	P15/TOUT2/TOUT3	0.900	3.232	80	SEG0 SEG1	-3.232	0.994	138	SEG57 SEG58	-0.900	-3.232	197	SEG115 SEG116	3.232	-0.907
22	P14/TOUT0/TOUT1	0.800	3.232	81	SEG2	-3.232	0.794	140	SEG59	-0.800	-3.232	199	SEG117	3.232	-0.807
23	P13/SRDY	0.700	3.232	82	SEG3	-3.232	0.694	141	SEG60	-0.700	-3.232	200	SEG118	3.232	-0.707
24	P12/SCLK	0.600	3.232	83	SEG4	-3.232	0.594	142	SEG61	-0.600	-3.232	201	SEG119	3.232	-0.607
25	P11/SOUT	0.500	3.232	84	SEG5	-3.232	0.494	143	SEG62	-0.500	-3.232	202	SEG120	3.232	-0.507
26	P10/SIN	0.400	3.232	85	SEG6	-3.232	0.394	144	SEG63	-0.400	-3.232	203	SEG121	3.232	-0.407
27	P07/D7	0.300	3.232	86	SEG7	-3.232	0.294	145	SEG64	-0.300	-3.232	204	SEG122	3.232	-0.307
28	P06/D6	0.200	3.232	87	SEG8	-3.232	0.194	146	SEG65	-0.200	-3.232	205	SEG123	3.232	-0.207
29	P05/D5	0.100	3.232	88	SEG9	-3.232	0.094	147	SEG66	-0.100	-3.232	206	SEG124	3.232	-0.107
30	P04/D4	0.000	3.232	89	SEG10	-3.232	-0.007	148	SEG67	0.000	-3.232	207	SEG125	3.232	-0.007
31	P03/D3	-0.100	3.232	90	SEG11	-3.232	-0.107	149	SEG68	0.100	-3.232	208	COM31	3.232	0.107
32	P02/D2	-0.200	3.232	91	SEG12	-3.232	-0.207	150	SEG69	0.200	-3.232	209	COM30	3.232	0.207
33	P01/D1	-0.300	3.232	92	SEG13	-3.232	-0.307	151	SEG70	0.300	-3.232	210	COM29	3.232	0.307
34	P00/D0	-0.400	3.232	93	SEG14	-3.232	-0.407	152	SEG70	0.400	-3.232	210	COM28	3.232	0.407
35	R00/A0	-0.500	3.232	94	SEG15	-3.232	-0.507	152	SEG72	0.500	-3.232	211	COM20	3.232	0.507
36	R00/A0	-0.600	3.232	95	SEG15 SEG16	-3.232	-0.607	155	SEG72 SEG73	0.600	-3.232	212	COM27 COM26	3.232	0.607
37	R02/A2	-0.700	3.232	96	SEG17	-3.232	-0.707	155	SEG74	0.700	-3.232	214	COM25	3.232	0.707
38	R03/A3	-0.800	3.232	97	SEG18	-3.232	-0.807	156	SEG75	0.800	-3.232	215	COM24	3.232	0.807
39	R04/A4	-0.900	3.232	98	SEG19	-3.232	-0.907	157	SEG76	0.900	-3.232	216	COM23	3.232	0.907
40	R05/A5	-1.000	3.232	99	SEG20	-3.232	-1.007	158	SEG77	1.000	-3.232	217	COM22	3.232	1.007
41	R06/A6	-1.100	3.232	100	SEG21	-3.232	-1.107	159	SEG78	1.100	-3.232	218	COM21	3.232	1.107
42	R07/A7	-1.200	3.232	101	SEG22	-3.232	-1.207	160	SEG79	1.200	-3.232	219	COM20	3.232	1.207
43	R10/A8	-1.300	3.232	102	SEG23	-3.232	-1.307	161	SEG80	1.300	-3.232	220	COM19	3.232	1.307
44	R11/A9	-1.400	3.232	103	SEG24	-3.232	-1.407	162	SEG81	1.400	-3.232	221	COM18	3.232	1.407
45	R12/A10	-1.500	3.232	104	SEG25	-3.232	-1.507	163	SEG82	1.500	-3.232	222	COM17	3.232	1.507
46	R13/A11	-1.600	3.232	105	SEG26	-3.232	-1.607	164	SEG83	1.600	-3.232	223	COM16	3.232	1.607
47	R14/A12	-1.700	3.232	106	SEG27	-3.232	-1.707	165	SEG84	1.700	-3.232	224	VD2	3.232	1.707
48	R15/A13	-1.800	3.232	107	SEG28	-3.232	-1.807	166	SEG85	1.800	-3.232	225	CG	3.232	1.807
49	R16/A14	-1.900	3.232	107	SEG29	-3.232	-1.907	167	SEG85	1.900	-3.232	225	CF	3.232	1.907
50	R10/A14 R17/A15	-2.000	3.232	100	SEG30	-3.232	-2.007	168	SEG87	2.000	-3.232	220	CE	3.232	2.007
51	R20/A16	-2.100	3.232	110	SEG31	-3.232	-2.107	169	SEG88	2.100	-3.232	228	CD	3.232	2.107
52	R21/A17	-2.200	3.232	111	SEG32	-3.232	-2.207	170	SEG89	2.200	-3.232	229	CC	3.232	2.207
53	R22/A18	-2.300	3.232	112	SEG33	-3.232	-2.307	171	SEG90	2.300	-3.232	230	CB	3.232	2.307
54	R23/A19	-2.400	3.232	113	SEG34	-3.232	-2.407	172	SEG91	2.400	-3.232	231	CA	3.232	2.407
55	R24/RD	-2.500	3.232	114	SEG35	-3.232	-2.507	173	SEG92	2.500	-3.232	232	VC5	3.232	2.507
56	R25/WR	-2.600	3.232	115	SEG36	-3.232	-2.607	174	SEG93	2.600	-3.232	233	VC4	3.232	2.607
57	R30/CE0	-2.700	3.232	116	SEG37	-3.232	-2.707	175	SEG94	2.700	-3.232	234	VC3	3.232	2.707
58	R31/CE1	-2.800	3.232	117	SEG38	-3.232	-2.807	176	SEG95	2.800	-3.232	235	VC2	3.232	2.807
50	101/021														

APPENDIXA S5U1C88000P1&S5U1C88649P2 MANUAL (Peripheral Circuit Board for S1C88650)


This manual describes how to use the Peripheral Circuit Board for S1C88650 (S5U1C88000P1&S5U1C88649P2). This circuit board is used to provide emulation functions when it is installed in the ICE (S5U1C88000H5), a debugging tool for the 8-bit Single Chip Microcomputer S1C88 Family.

The explanation assumes that the S1C88650 circuit data has been downloaded into the S1C88 Family Peripheral Circuit Board (S5U1C88000P1).

Refer to the "S5U1C88000P Manual" for how to download circuit data into the S1C88 Family Peripheral Circuit Board (S5U1C88000P1) and common specifications of the board. For details on ICE functions and how to operate the debugger, refer to the separately prepared manuals.

A.1 Names and Functions of Each Part

The following explains the names and functions of each part of the S5U1C88000P1&S5U1C88649P2.

(1) SW1

When downloading circuit data, set this switch to the "3" position. Otherwise, set to position "1".

(2) LCDVCC (on the back of the S5U1C88000P1 board) The internal power voltage (Vc5) for the LCD driver can be varied using the DIP switch as shown in Table A.1.1. Be aware that the Vc5 voltage level on this board is different from that of the actual IC.

 Table A.1.1 Setting LCDVCC

 LCDVCC
 Setting

	200	.00		Setting
1	2	3	4	Setting
ON	OFF	OFF	ON	Vc5 = 6 V
OFF	ON	OFF	OFF	Vc5 = 5.75 V
OFF	OFF	ON	OFF	Vc5 = 5.5 V
OFF	OFF	OFF	ON	$V_{C5} = 5 V$
Ot	her cor	nbinati	ons	Not allowed

The voltage value assumes that the LCD contrast adjustment register LC0–LC3 is 0FH. There is a need to allow for a maximum ±6% of error due to the characteristics of the parts used on this board.

(3) VLCD control

Unused.

(4) VSVD control

This control is used for varying the power supply voltage to confirm the supply voltage detection (SVD) function. (Refer to Section A.2.2, "Differences from Actual IC".)

(5) OSC1 H control

This control is used for coarse adjustment of the OSC1 CR oscillation frequency.

(6) OSC1 L control

This control is used for fine adjustment of the OSC1 CR oscillation frequency.

(7) OSC3 H control

This control is used for coarse adjustment of the OSC3 CR oscillation frequency.

(8) OSC3 L control

This control is used for fine adjustment of the OSC3 CR oscillation frequency.

(9) RESET switch

This switch initializes the internal circuits of this board and feeds a reset signal to the ICE.

(10) LED 1 (MPU/MCU)

Indicates the MPU or MCU mode. Lit: MPU mode Not lit: MCU mode

(11) LED 2 (BUSMOD), LED 3 (CPUMOD)

Indicates the bus and CPU modes (BUSMOD/ CPUMOD register settings).

Table A.1.2	Bus and	CPU modes
-------------	---------	-----------

BUSMOD	CPUMOD	Bus mode	CPU mode
Lit	Lit	Expansion	Maximum
Lit	Not lit		Minimum
Not lit	Lit	Single chip	Maximum
Not lit	Not lit		Minimum

(12) LED 4 (CLKCHG)

Indicates the CPU operating clock. Lit: OSC3 (CLKCHG register = "1") Not lit: OSC1 (CLKCHG register = "0")

(13) LED 5 (SOSC3)

Indicates the OSC3 oscillation status.

- Lit: OSC3 oscillation is on
 - (SOSC3 register = "1")
- Not lit: OSC3 oscillation is off (SOSC3 register = "0")

(14) LED 6 (SVDON)

Indicates the SVD circuit status. Lit: SVD circuit is on (SVDON register = "1") Not lit: SVD circuit is off

(SVDON register = "0")

(15) LED 7 (LCDC)

Indicates the LCD circuit status. Lit: LCD circuit is on (LCDC register = Not "00") Not lit: LCD circuit is off (LCDC register = "00")

(16) LED 8 (HLMOD)

Indicates the heavy load protection status. Lit: Heavy load protection mode (HLMOD register = "1")

Not lit: Normal mode (HLMOD register = "0")

(17) LED 9 (HALT/SLEEP)

Indicates the CPU status. Lit: HALT or SLEEP Not lit: RUN

(18) LED 10 (VDSEL)

Indicates the power voltage (VDD or VD2) selected for the LCD system voltage regulator. Lit: VD2 (VDSEL register = "1") Not lit: VDD (VDSEL register = "0")

(19) LED 11 (DBON)

Indicates the status of the power voltage booster. Lit: ON (DBON register = "1") Not lit: OFF (DBON register = "0")

(20) LED 12 (SEGREV)

Indicates the SEG output assignment status. Lit: Reverse (SEGREV register = "1") Not lit: Normal (SEGREV register = "0")

(21) LED 13 (Reserved)

Unused.

(22) LED 14 (OSC1 operating clock)

The OSC1 operating clock is connected to this LED. The corresponding monitor pin (pin 14) can be used to check the OSC1 clock frequency.

(23) LED 15 (OSC3 operating clock)

The OSC3 operating clock is connected to this LED. The corresponding monitor pin (pin 15) can be used to check the OSC3 clock frequency.

(24) LED 16 (FPGA configuration)

If the FPGA on the S5U1C88000P1 includes circuit data, this LED lights when the power is turned on. If this LED does not light at powerup, a circuit data must be written to the FPGA before debugging can be started (turn the power on again after writing data).

(25) LED signal monitor connector

This connector provides the signals that drive the LEDs shown above for monitoring. The signals listed below are output from the connector pins. The signal level is high when the LED is lit and is low when the LED is not lit.

	19	17	15	13	11	9	7	5	3	1	
	0 0	000	0 0	0 0	000	000	0 0	0 0	0 0	0 0]
Ľ	20	18	16	14	12	10	8	6	4	2	_

Fig. A.1.3 LED signal monitor connector

- Pin 1: LED 1 (MPU/MCU mode)
- Pin 2: LED 2 (Bus mode 1)
- Pin 3: LED 3 (CPU mode 0)
- Pin 4: LED 4 (CPU operating clock)
- Pin 5: LED 5 (OSC3 oscillation status)
- Pin 6: LED 6 (SVD circuit status)
- Pin 7: LED 7 (LCD circuit status)
- Pin 8: LED 8 (Heavy load protection status)
- Pin 9: LED 9 (HALŤ/SLEÉP, RUN status)
- Pin 10: LED 10 (LCD voltage regulator power status)
- Pin 11: LED 11 (Power voltage booster status)
- Pin 12: LED 12 (SEG output assignment status)
- Pin 14: OSC1 operating clock
- Pin 15: OSC3 operating clock

Pin 18: OSC1 CR oscillation frequency monitor pin Pin 19: OSC3 CR oscillation frequency monitor pin

Pins 13, 17 and 20 are not used.

The OSC3 CR oscillation clock is connected to pins 18 and 19. (The CR oscillation circuit on this board always operates even if crystal oscillation is selected by mask option and regardless of the SOSC3 register status.) These pins can be used to monitor CR oscillation when adjusting the oscillation frequency.

(26) I/O #1, I/O #2, I/O #3, I/O #4 connectors

These are the connectors for connecting the I/ O and LCD. The I/O cables (80-pin/40-pin \times 2 flat type, 100-pin/50-pin \times 2 flat type, 40-pin/ 20-pin \times 2 flat type) are used to connect to the target system.

A.2 Precautions

Take the following precautions when using the S5U1C88000P1&S5U1C88649P2.

A.2.1 Precaution for operation

- (1) Turn the power of all equipment off before connecting or disconnecting cables.
- (2) Make sure that the input ports (K00–K03) are not all set to low when turning the power on until the mask option data is loaded, as the key-entry reset function may activated.
- (3) The mask option data must be loaded before debugging can be started.

A.2.2 Differences from actual IC

Caution is called for due to the following function and property related differences with the actual IC. If these precautions are overlooked, it may not operate on the actual IC, even if it operates on the ICE in which the S5U1C88000P1&S5U1C88649P2 has been installed.

(1) I/O differences

Interface power voltage

This board and target system interface voltage is set to +3.3 V. To obtain the same interface voltage as in the actual IC, attach a level shifter or similar circuit on the target system side to accommodate the required interface voltage.

Drive capability of each output port

The drive capability of each output port on this board is higher than that of the actual IC. When designing the application system and software, refer to Chapter 8, "ELECTRICAL CHARACTERISTICS" to confirm the drive capability of each output port.

Input port characteristics

The AC characteristic of the input terminal is different from that of the actual IC and it affects the input interrupt function. Therefore, evaluate the operation in the actual IC if the rise/fall time of the input signal is long.

Protective diode of each port

All I/O ports incorporate a protective diode for VDD and VSS, and the interface signals between this board and the target system are set to +3.3 V. Therefore, this board and the target system cannot be interfaced with a voltage exceeding VDD even if the output ports are configured with open-drain output.

Pull-up resistance value

The pull-up resistance values on this board are set to $300 \text{ k}\Omega$ which differ from those for the actual IC. For the resistance values on the actual IC, refer to Chapter 8, "ELECTRICAL CHARACTERISTICS".

Note that when using pull-up resistors to pull the input terminals high, the input terminals may require a certain period to reach a valid high level. Exercise caution if a key matrix circuit is configured using a combination of output and input ports, since rise delay times on these input ports differ from those of the actual IC.

(2) Differences in current consumption

The amount of current consumed by this board differs significantly from that of the actual IC. Inspecting the LEDs on the S5U1C88000P1 front panel may help keep track of approximate current consumption. The following factors/components greatly affect device current consumption:

Those which can be verified by LEDs and monitor pins

- Run and Halt execution ratio (verified by LEDs and monitor pins on the ICE)
- b) CPU operating clock change control (LED 4: monitor pin 4)
- c) OSC3 oscillation on/off control (LED 5: monitor pin 5)
- d) SVD circuit on/off control (LED 6: monitor pin 6)
- e) LCD power supply control (LED 7: monitor pin 7)
- f) Heavy load protection mode (LED 8: monitor pin 8)
- g) SLEEP and Halt execution ratio (LED 9: monitor pin 9)
- h) LCD voltage regulator power selection (LED 10: monitor pin 10)
- i) Power voltage booster (LED 11: monitor pin 11)
- j) OSC1 operating clock (LED 14: monitor pin 14)
- k) OSC3 operating clock (LED 15: monitor pin 15)

Those that can only be counteracted by system or software

- l) Current consumed by the internal pull-up resistors
- m) Input ports in a floating state

(3) Functional precautions

LCD circuit

- Pay attention to the output drive capability and output voltage of the LCD terminals (SEG, COM), since they are different from those of the actual IC. The system and the software should be designed in order to adjust the LCD contrast. The S5U1C88000P1 board allows switching of the LCD drive voltage with its switch on the back side. (Refer to Section A.1, "Names and Functions of Each Part")
- When the LCDC0 and LCDC1 registers are both set to "0" (LCD power control circuit is off), the SEG and COM terminal outputs of the actual IC are fixed at Vss level. Note, however, that the COM outputs are fixed at Vc4 level and the SEG outputs are fixed at Vc3 level in this board.
- This board supports $16 \times 16/5 \times 8$ dot font only and 12×12 dot font can not be used. (Writing and reading to/from DTFNT bit are enabled.)
- This board does not support reversing of the SEG assignment using the SEGREV bit. Check whether LED12 is lit or not to confirm the SEGREV status. (Writing and reading to/from SEGREV bit are enabled.)
- The actual IC outputs only COM0 to COM15 signals even if the display area is switched (DSPAR = "1") when the LCD driver is set to 1/16 (0r 1/8) duty drive. This board outputs COM16 to COM31 signals with the same waveform as the COM0 to COM15. Therefore, if COM16 to COM31 along with COM0 to COM15 are connected to the LCD panel, the LCD panel displays the same contents twice to the upper half and lower half.

SVD circuit

- The SVD function is realized by artificially varying the power supply voltage using the VSVD control on the front panel of the S5U1C88000P1.
- There is a finite delay time from when the power to the SVD circuit turns on until actual detection of the voltage. The delay time on this board differs from that of the actual IC. Refer to Chapter 8, "ELECTRICAL CHARACTERIS-TICS" when setting the appropriate wait time for the actual IC.
- The evaluation voltages supported in this board are different from those of the actual IC. When debugging the SVD operation using this board, evaluate the SVD results as levels not voltages.

Oscillation circuit

- The OSC1 crystal oscillation frequency is fixed at 32.768 kHz.
- The OSC1 CR oscillation frequency can be adjusted in the range of approx. 20 kHz to 500 kHz using the control on the S5U1C88000P1 front panel. Note that the actual IC does not operate with all of these frequencies; refer to Chapter 8, "ELECTRICAL CHARACTERIS-TICS" to select the appropriate operating frequency.
- The OSC3 crystal oscillation frequency is fixed at 4.9152 MHz.
- The OSC3 CR oscillation frequency can be adjusted in the range of approx. 100 kHz to 8 MHz using the control on the S5U1C88000P1 front panel. Note that the actual IC does not operate with all of these frequencies; refer to Chapter 8, "ELECTRICAL CHARACTERIS-TICS" to select the appropriate operating frequency.
- The S5U1C88000P1&S5U1C88649P2 does not include the OSC3 ceramic oscillation circuit. When ceramic oscillation circuit is selected by mask option, the S5U1C88649P2 uses the onboard crystal oscillation circuit.
- When using an external clock, adjust the external clock (amplitude: $3.3 V \pm 5\%$, duty: $50\% \pm 10\%$) and input to the OSC1 or OSC3 terminal with Vss as GND.
- This board can operate normally even when the CPU clock is switched to OSC3 (CLKCHG = "1") immediately after the OSC3 oscillation control circuit is turned on (SOSC3 = "1") without a wait time inserted. In the actual IC, an oscillation stability wait time is required before switching the CPU clock after the OSC3 oscillation is turned on. Refer to Chapter 8, "ELECTRICAL CHARACTERISTICS" when setting the appropriate wait time for the actual IC.
- Use separate instructions to switch the clock from OSC3 to OSC1 and to turn off the OSC3 oscillation circuit. If executed simultaneously with a single instruction, these operations, although good with this board, may not function properly with the actual IC.
- This board contains oscillation circuits for OSC1 and OSC3. Keep in mind that even though the actual IC may not have a resonator connected to its OSC3, this board can operate with the OSC3 circuit.
- Because the logic level of the oscillation circuit is high, the timing at which the oscillation starts on this board differs from that of theactual IC.

Access to undefined address space

If any undefined space in the S1C88650's internal ROM/RAM or I/O is accessed for data read or write operations, the read/written value is indeterminate. Additionally, it is important to remain aware that the indeterminate state differs between this board and the actual IC.

Reset circuit

Keep in mind that the operation sequence from when the ICE with this board installed is powered on until the time at which the program starts running differs from the sequence of the actual IC. This is because this board becomes capable of operating as a debugging system after the user program and optional data are downloaded.

Internal power supply circuit

The LCD drive voltage on this board is different from that on the actual IC.

Size of the Kanji-font ROM

The actual IC contains 896K bytes of Kanji-font memory (address 010000H to 0EFFFFH). The memory size implemented in the ICE is 448K bytes.

Function option

- Input interface level
 - The actual IC allows selection of the input interface level either COMS level or CMOS Schmitt level by a function option. This board supports CMOS level only and selection of the function option using Winfog does not affect the interface level of this board.

(4) Notes on model support

Parameter file

The ROM, RAM and I/O spaces in the ICE with this board installed are configured when the debugger on the personal computer starts up using the parameter file (88650.par) provided for each model.

The parameter file allows the user to modify its contents according to the ROM and RAM spaces actually used. Do not configure areas other than below when using the IC in single chip maximum mode.

mann mour	
ROM area:	0000H to BFFFH
	10000H to EFFFFH
RAM area:	D800H to F7FFH
Stack area:	D800H to F7FFH

Access disable area

When using this board for development of an S1C88650 application, be sure not to read and write from/to I/O memory addresses FF16H and FF90H to FFADH.

Furthermore, do not change the initial values when writing to bit D4 of address FF17H, bits D6 and D7 of address FF21H, bit D7 of address FF22H, and bit D7 of address FF26H.

A.3 Connecting to the Target System

This section explains how to connect the S5U1C88000P1&S5U1C88649P2 to the target system.

Note: Turn the power of all equipment off before connecting or disconnecting cables.

Use the I/O cables (80-pin/40-pin \times 2 flat type, 100-pin/50-pin \times 2 flat type, 40-pin/20-pin \times 2 flat type) to connect between the I/O #1 to I/O #4 connectors of the front panel and the target system.

Connect the 80-pin, 100-pin and 40-pin cable connectors to the I/O #1 to I/O #4 connectors, and the 40-pin \times 2, 50-pin \times 2 and 20-pin \times 2 connectors to the target system. Be careful as power (VDD) is supplied to I/O #1, I/O #2 and I/O #3 connectors.

The following shows the clock frequencies generated from the on-board crystal oscillation circuits:

OSC1 crystal oscillation circuit: 32.768 kHz OSC3 crystal oscillation circuit: 4.9152 MHz

When CR oscillation is selected, the oscillation frequency can be adjusted using the controls on the front panel (OSC1H and OSC1L for adjusting OSC1, OSC3H and OSC3L for adjusting OSC3). Use a frequency counter or other equipment to be connected to the OSC1 CR oscillation frequency monitor pin (pin 18) on the monitor connector or OSC3 CR oscillation frequency monitor pin (pin 19) for monitoring the frequency during adjustment. Be sure of the frequency when using this monitor pin because the CR oscillation frequency is initially undefined.

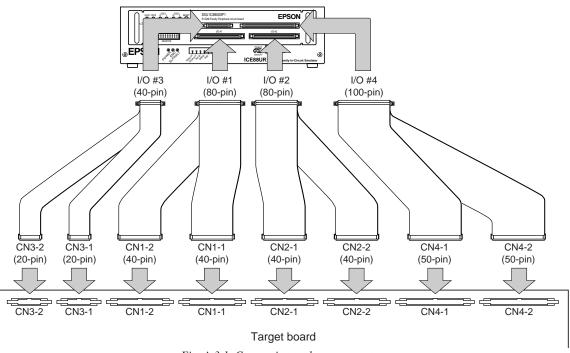


Fig. A.3.1 Connecting to the target system

40-pin CN2-2 Pin name SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 SEG56 SEG57 SEG58 SEG59 SEG60 SEG61 SEG62 SEG63 SEG64 SEG65

I/O connector pin assignment

	Table A.3.1 1/	<i>O #1 c</i>				Table A.3.2 I/	O #2 a	
	40-pin CN1-1		40-pin CN1-2			40-pin CN2-1		40-pin Cl
No.	Pin name	No.	Pin name		0.	Pin name	No.	Pin
1	VDD (3.3 V)	1	R12/A10		1	VDD (3.3 V)	1	SE
2	VDD (3.3 V)	2	R13/A11	1 1	2	VDD (3.3 V)	2	SE
3	Vss	3	R14/A12	1 1	3	Vss	3	SE
4	Vss	4	R15/A13	1 1	4	Vss	4	SE
5	N.C.	5	R16/A14		5	RESET	5	SE
6	N.C.	6	R17/A15	1 1	6	MCU/MPU	6	SE
7	N.C.	7	R20/A16	1 1	7	OSC1EX	7	SE
8	N.C.	8	R21/A17	1 1	8	OSC3EX	8	SE
9	N.C.	9	R22/A18		9	N.C.	9	SE
10	N.C.	10	R23/A19	1 1	0	N.C.	10	SE
11	N.C.	11	R24/RD	1 1	1	N.C.	11	SE
12	N.C.	12	R25/WR	1 1	2	N.C.	12	SE
13	N.C.	13	N.C.		3	N.C.	13	SE
14	N.C.	14	N.C.	1	4	SEG0	14	SE
15	N.C.	15	R30/CE0	1	5	SEG1	15	SE
16	N.C.	16	R31/CE1	1	6	SEG2	16	SE
17	N.C.	17	R32/CE2	1	7	SEG3	17	SE
18	N.C.	18	R33/(BACK)	1	8	SEG4	18	SE
19	N.C.	19	N.C.	1	9	SEG5	19	SE
20	N.C.	20	N.C.	2	20	SEG6	20	SE
21	N.C.	21	N.C.	2	21	SEG7	21	SE
22	N.C.	22	N.C.	2	22	SEG8	22	SE
23	N.C.	23	N.C.	2	.3	SEG9	23	SE
24	N.C.	24	N.C.	2	24	SEG10	24	SE
25	N.C.	25	COM0	2	.5	SEG11	25	SE
26	N.C.	26	COM1	2	26	SEG12	26	SE
27	N.C.	27	COM2	2	27	SEG13	27	SE
28	N.C.	28	COM3	2	.8	SEG14	28	SE
29	N.C.	29	COM4	2	9	SEG15	29	SE
30	N.C.	30	COM5	3	0	SEG16	30	SE
31	R00/A0	31	COM6	3	31	SEG17	31	SE
32	R01/A1	32	COM7	3	2	SEG18	32	SE
33	R02/A2	33	COM8	3	3	SEG19	33	SE
34	R03/A3	34	COM9	3	4	SEG20	34	SE
35	R04/A4	35	COM10	1 1	5	SEG21	35	SE
36	R05/A5	36	COM11	3	6	SEG22	36	SE
37	R06/A6	37	COM12	1 1	7	SEG23	37	SE
38	R07/A7	38	COM13	1 1	8	SEG24	38	SE
39	R10/A8	39	COM14		9	SEG25	39	SE
40	R11/A9	40	COM15	1 1	0	SEG26	40	SE

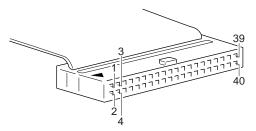


Fig. A.3.2 CN1-1/CN1-2 and CN2-1/CN2-2 pin layout

SEG66

APPENDIX A S5U1C88000P1&S5U1C88649P2 MANUAL (Peripheral Circuit Board for S1C88650)

	Table A.3.3 I/	0 #3 a	connector
	20-pin CN3-1		20-pin CN3-2
No.	Pin name	No.	Pin name
1	K00	1	Vss
2	K01	2	Vss
2 3	K02	3	P00/D0
4	K03(BREQ)	4	P01/D1
5	K04/EXCL0	5	P02/D2
6	K05/EXCL1	6	P03/D3
7	K06/EXCL2	7	P04/D4
8	K07/EXCL3	8	P05/D5
9	N.C.	9	P06/D6
10	N.C.	10	P07/D7
11	N.C.	11	VDD (3.3 V)
12	N.C.	12	VDD (3.3 V)
13	N.C.	13	P10/SIN
14	N.C.	14	P11/SOUT
15	N.C.	15	P12/SCLK
16	N.C.	16	P13/SRDY
17	N.C.	17	P14/TOUT0/TOUT1
18	N.C.	18	P15/TOUT2/TOUT3
19	N.C.	19	P16/FOUT
20	N.C.	20	P17/TOUT2/TOUT3

	Table A.3.4 I/	O #4 c	
	50-pin CN4-1		50-pin CN4-2
No.	Pin name	No.	Pin name
1	SEG67	1	SEG117
2	SEG68	2	SEG118
3	SEG69	3	SEG119
4	SEG70	4	SEG120
5	SEG71	5	SEG121
6	SEG72	6	SEG122
7	SEG73	7	SEG123
8	SEG74	8	SEG124
9	SEG75	9	SEG125
10	SEG76	10	N.C.
11	SEG77	11	N.C.
12	SEG78	12	N.C.
13	SEG79	13	N.C.
14	SEG80	14	N.C.
15	SEG81	15	N.C.
16	SEG82	16	N.C.
17	SEG83	17	N.C.
18	SEG84	18	N.C.
19	SEG85	19	N.C.
20	SEG86	20	N.C.
21	SEG87	21	N.C.
22	SEG88	22	N.C.
23	SEG89	23	N.C.
24	SEG90	24	N.C.
25	SEG91	25	N.C.
26	SEG92	26	N.C.
27	SEG93	27	N.C.
28	SEG94	28	N.C.
29	SEG95	29	N.C.
30	SEG96	30	N.C.
31	SEG97	31	N.C.
32	SEG98	32	N.C.
33	SEG99	33	N.C.
34	SEG100	34	Vss
35	SEG101	35	COM16
36	SEG102	36	COM17
37	SEG103	37	COM18
38	SEG104	38	COM19
39	SEG105	39	COM20
40	SEG106	40	COM21
41	SEG107	41	COM22
42	SEG108	42	COM23
43	SEG109	43	COM24
44	SEG110	44	COM25
45	SEG111	45	COM26
46	SEG112	46	COM27
47	SEG113	47	COM28
48	SEG114	48	COM29
49	SEG115	49	COM30
50	SEG116	50	COM31
50	SEGII6	50	COM31

A.4 Product Specifications The components specifications of the S5U1C88649P2

The components specifications of the S5U1C886 are listed below.	649P2		
S5U1C88649P2			
Dimensions (mm):			
184 (W) \times 152 (D) \times 17 (H)			
I/O cable (100-pin/50-pin x 2)			
S5U1C88649P2 connector (100-pin):			
KEL 8830E-100-170L			
Cable connector (100-pin):			
KEL 8822E-100-170L × 1			
Cable connector (50-pin):			
Connector 3M 7950-B500SC Strain relief 3M 3448-7950	imes 2		
Strain relief 3M 3448-7950	imes 2		
Cable:			
50-pin flat cable	$\times 1$		
Interface:			
CMOS interface (3.3 V)			
Length:			
Approx. 40 cm			
I/O cable (40-pin/20-pin x 2)			
I/O cable (40-pin/20-pin x 2) S5U1C88649P2 connector (40-pin):			
S5U1C88649P2 connector (40-pin):			
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L			
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin):	× 1		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L	$\times 1$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin):			
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC	$\times 1$ $\times 2$ $\times 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920	imes 2		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable:	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable	imes 2		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface:	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V)	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V) Length:	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V)	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V) Length:	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V) Length: Approx. 40 cm	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V) Length: Approx. 40 cm	$ imes 2 \\ imes 2$		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V) Length: Approx. 40 cm Accessories 50-pin connector for the target system: 3M 3433-6002LCSC	×2 ×2 ×1		
S5U1C88649P2 connector (40-pin): KEL 8830E-040-170L Cable connector (40-pin): KEL 8822E-040-170L Cable connector (20-pin): Connector 3M 7920-B500SC Strain relief 3M 3448-7920 Cable: 20-pin flat cable Interface: CMOS interface (3.3 V) Length: Approx. 40 cm Accessories 50-pin connector for the target system:	×2 ×2 ×1		

APPENDIX B USING KANJI FONT

Use the S5U1C88000R1 (12×12 -dot RIS 506 kanji font package) to display kanji font on an LCD in the S1C88650 microcomputer.

This package contains 12×12 -dot-sized fonts (Seiko Epson original design^{Note 1}) for the character codes conforming to the music shift-JIS kanji stipulated in the Recording Industry Association of Japan standard RIS 506-1996, which are supplied in the form of embeddable data for S1C88-Family microcomputer programs. The package also contains a sample program that runs on the S1C88-Family microcomputer to display this font data on an LCD, an application note for the sample program, and a bitmap utility that can be used to create custom font data.

The kanji font data is supplied in an object file format (assembler output file identified by the extension .obj) to enable it to be embedded in the S1C88-Family microcomputer programs. Simply by linking this object file to the created application program, the kanji font data can be used easily.Note 2

See the "S5U1C88000R1 Manual" for details.

Notes 1 Before the kanji font data included with the package and the typefaces shown in the manual can be used, a contract for a license to use the typefaces must be concluded between Seiko Epson and the purchaser.

2 The programs necessary to obtain font

- data from the character codes and display the font data on an LCD must be created by the user. Compile Assemble Font data Linker object ROM size used: 133,388 bytes Locator Shown here is the typeface of an excerpted kanji font. Executable file
- User-developed program

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

- SALES OFFICES -

West

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15 80992 Munich, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176 51379 Leverkusen, GERMANY Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK & IRELAND BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE

 1 Avenue de l' Atlantique, LP 915
 Les Conquerants

 Z.A. de Courtaboeuf 2, F-91976
 Les Ulis Cedex, FRANCE

 Phone: +33-(0)1-64862350
 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design Center Edificio Testa, Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN Phone: +34-93-544-2490 Fax: +34-93-544-2491

Scotland Design Center

Integration House, The Alba Campus Livingston West Lothian, EH54 7EG, SCOTLAND Phone: +44-1506-605040 Fax: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road Shanghai 200233, CHINA Phone: 86-21-5423-5577 Fax: 86-21-5423-4677

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110 Phone: 02-8786-6688 Fax: 02-8786-6660

HSINCHU OFFICE

No. 99, Jiangong Rd., Hsinchu City 300 Phone: +886-3-573-9900 Fax: +886-3-573-9169

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192 Phone: +65-6337-7911 Fax: +65-6334-2716

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

GUMI OFFICE

 6F, Good Morning Securities Bldg.

 56 Songjeong-Dong, Gumi-City, 730-090, KOREA

 Phone:
 054-454-6027

 Fax:
 054-454-6093

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

ED International Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5117

EPSON Electronic Devices Website

http://www.epsondevice.com

Document code: 404824700 Issue January, 2004 Printed in Japan ①A